Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Sci ; 112(8): 3041-3049, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34101947

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) is a cell selective cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. NIR-PIT targeting epidermal growth factor receptor (EGFR) in head and neck cancer (HNC) was conditionally approved in Japan in 2020. APC-bound tumors can be detected using endoscopic fluorescence imaging, whereas NIR light can be delivered using endoscopic fiber optics. The aims of this study were: (1) to assess the feasibility of endoscopic NIR-PIT in an orthotopic HNC model using a CD44-expressing MOC2-luc cell line; and (2) to evaluate quantitative fluorescence endoscopic imaging prior to and during NIR-PIT. The results were compared in 3 experimental groups: (1) untreated controls, (2) APC injection without light exposure (APC-IV), and (3) APC injection followed by NIR light exposure (NIR-PIT). APC injected groups showed significantly higher fluorescence signals for IR700 compared with the control group prior to therapeutic NIR light exposure, and the fluorescence signal significantly decreased in the NIR-PIT group after light exposure. After treatment, the NIR-PIT group showed significantly attenuated bioluminescence compared with the control and the APC-IV groups. Histology demonstrated diffuse necrotic death of the cancer cells in the NIR-PIT group alone. In conclusion, endoscopically delivered light combined with quantitative fluorescence imaging can be used to "see and treat" HNC. This method could also be applied to other types of cancer approachable with endoscopy.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias de Cabeça e Pescoço/terapia , Receptores de Hialuronatos/antagonistas & inibidores , Indóis/administração & dosagem , Compostos de Organossilício/administração & dosagem , Administração Intravenosa , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Endoscopia , Estudos de Viabilidade , Feminino , Neoplasias de Cabeça e Pescoço/imunologia , Imunoterapia , Indóis/química , Indóis/farmacologia , Camundongos , Imagem Óptica , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Cycle ; 20(13): 1221-1230, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34148497

RESUMO

Hyperthermia has been used for cancer therapy for a long period of time, but has shown limited clinical efficacy. Induction-heating hyperthermia using the combination of magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF), termed magnetic hyperthermia (MHT), has previously shown efficacy in an orthotopic mouse model of disseminated gastric cancer. In the present study, superparamagnetic iron oxide nanoparticles (SPIONs), a type of MNP, were conjugated with an anti-HER2 antibody, trastuzumab and termed anti-HER2-antibody-linked SPION nanoparticles (anti-HER2 SPIONs). Anti-HER2 SPIONs selectively targeted HER2-expressing cancer cells co-cultured along with normal fibroblasts and HER2-negative cancer cells and caused apoptosis only in the HER2-expressing individual cancer cells. The results of the present study show proof-of-concept of a novel hyperthermia technology, immuno-MHT for selective cancer therapy, that targets individual cancer cells.Abbreviations: AMF: alternating magnetic field; DDW: double distilled water; DMEM: Dulbecco's Modified Eagle's; Medium; f: frequency; FBS: fetal bovine serum; FITC: Fluorescein isothiocyanate; GFP: green fluorescent protein; H: amplitude; Hsp: heat shock protein; MHT: magnetic hyperthermia; MNPs: magnetic nanoparticles; PI: propidium iodide; RFP: red fluorescent protein; SPION: superparamagnetic iron oxide (Fe3O4) nanoparticle.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Portadores de Fármacos , Hipertermia Induzida , Imunoterapia , Magnetoterapia , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias/terapia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Composição de Medicamentos , Células HCT116 , Humanos , Cinética , Campos Magnéticos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Estudo de Prova de Conceito , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
3.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202823

RESUMO

Genetic mutations accumulated overtime could generate many growth and survival advantages for cancer cells, but these mutations also mark cancer cells as targets to be eliminated by the immune system. To evade immune surveillance, cancer cells adopted different intrinsic molecules to suppress immune response. PD-L1 is frequently overexpressed in many cancer cells, and its engagement with PD-1 on T cells diminishes the extent of cytotoxicity from the immune system. To resume immunity for fighting cancer, several therapeutic antibodies disrupting the PD-1/PD-L1 interaction have been introduced in clinical practice. However, their immunogenicity, low tissue penetrance, and high production costs rendered these antibodies beneficial to only a limited number of patients. PD-L1 dimer formation shields the interaction interface for PD-1 binding; hence, screening for small molecule compounds stabilizing the PD-L1 dimer may make immune therapy more effective and widely affordable. In the current study, 111 candidates were selected from over 180,000 natural compound structures through virtual screening, contact fingerprint analysis, and pharmacological property prediction. Twenty-two representative candidates were further evaluated in vitro. Two compounds were found capable of inhibiting the PD-1/PD-L1 interaction and promoting PD-L1 dimer formation. Further structure optimization and clinical development of these lead inhibitors will eventually lead to more effective and affordable immunotherapeutic drugs for cancer patients.


Assuntos
Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/química , Anticorpos/uso terapêutico , Antineoplásicos Imunológicos/química , Antígeno B7-H1/química , Análise por Conglomerados , Reagentes de Ligações Cruzadas/química , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Imunoterapia , Simulação de Acoplamento Molecular , Mutação , Polímeros/uso terapêutico , Ligação Proteica , Multimerização Proteica , Bibliotecas de Moléculas Pequenas/química
4.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
5.
Chem Biodivers ; 17(5): e2000037, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32163220

RESUMO

The ocotillol (OCT)-type saponins have been known as a tetracyclic triterpenoid, possessing five- or six-membered epoxy ring in the side chain. Interestingly, this type saponin was mostly found in Panax vietnamensis Ha et Grushv., Araliaceae (VG), hence making VG unique from the other Panax spp. Five OCT-type saponins, majonoside R2, vina-ginsenoside R2, majonoside R1, pseudoginsenoside RT4, vina-ginsenoside R11, together with three protopanaxadiol (PPD)-type saponins and four protopanaxatriol (PPT)-type saponins from VG were evaluated for their antimelanogenic activity. All of isolates were found to be active. More importantly, the five OCT-type saponins inhibited melanin production in B16-F10 mouse melanoma cells, without showing any cytotoxicity. Besides ginsenoside Rd and ginsenoside Rg3 in PPD and notoginsenoside R1 in PPT-type saponins, majonoside R2 was the most potent melanogenesis inhibitory activity in OCT-type saponins. In this article, we highlighted antimelanogenic activity of OCT-type saponins and potential structure-activity relationship (SAR) of ginsenosides. Our results suggested that OCT-type saponins could be used as a depigmentation agent.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Ginsenosídeos/farmacologia , Melanoma/tratamento farmacológico , Panax/química , Saponinas/farmacologia , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Melaninas/antagonistas & inibidores , Melaninas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Conformação Molecular , Plantas Medicinais , Saponinas/química , Saponinas/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Cancer Immunol Res ; 8(3): 345-355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953245

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a mAb conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is a surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, CD25-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Treg), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44- and CD25-targeted NIR-PIT also resulted in some complete remissions. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Lewis/terapia , Neoplasias do Colo/terapia , Receptores de Hialuronatos/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Linfócitos T Reguladores/imunologia , Animais , Antineoplásicos Imunológicos/química , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Receptores de Hialuronatos/imunologia , Imunoterapia/métodos , Indóis/química , Indóis/farmacologia , Raios Infravermelhos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Isoindóis , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Fototerapia/métodos , Linfócitos T Reguladores/patologia
7.
Acta Biomater ; 102: 367-383, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31778831

RESUMO

Effective accumulation of nanoparticles (NPs) in tumor regions is one of the major motivations in nanotechnology research and that the establishment of an efficient targeting nanoplatform for the treatment of malignant tumors is urgently needed for theranostic applications. In this study, we engineered multifunctional sequential targeting NPs for achieving synergistic antiangiogenic photothermal therapy (PTT) and multimodal imaging-guided diagnosis for anaplastic thyroid carcinoma (ATC) theranostics. Antibody bevacizumab with an affinity towards vascular endothelial growth factor (VEGF) on the tumor cell surface was conjugated onto the surface of polymer NPs for VEGF targeting and antiangiogenic therapy. Encapsulated IR825 was employed as a photothermal agent (PTA) with a mitochondrial targeting capability, which further cascades NPs into mitochondria to enhance hyperthermic efficiency in the ablation of tumor cells. Importantly, the combination of bevacizumab and IR825 in a single nanosystem achieved desirable accumulations of NPs and that sequential targeted PTT combined with antiangiogenesis significantly promoted the therapeutic efficiency in eradicating tumors by near-infrared (NIR) laser irradiation. Furthermore, these NPs are extraordinary contrast agents for photoacoustic, ultrasound and fluorescence imaging applications, providing multimodal imaging capabilities for therapeutic monitoring and a precise diagnosis. Therefore, this multifunctional nanoplatform provides a promising theranostic strategy for extremely malignant ATC. STATEMENT OF SIGNIFICANCE: Anaplastic thyroid carcinoma (ATC), with extremely aggressive behavior, lacks a satisfactory therapeutic method and a comprehensive early diagnostic strategy. Herein, we successfully synthesized a sequential targeting nanoplatform (IR825@Bev-PLGA-PFP NPs) with theranostic function, which specifically binds to VEGF on the tumor cell surface and further cascades into mitochondria to achieve effective accumulation of NPs in the tumor regions. As a result, it solves the urgent demand for ATC detection and therapy. By breaking the limitation of traditional target, such as low efficacy and frequent recurrence as the results of low accumulation, sequential targeting combined with synergistic antiangiogenic PTT completely eradicates tumors without any residual tissue and side effect. Therefore, this strategy paves a solid way for further investigation in the theranostic progressing of ATC.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Nanopartículas/uso terapêutico , Medicina de Precisão/métodos , Carcinoma Anaplásico da Tireoide/diagnóstico por imagem , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Inibidores da Angiogênese/química , Animais , Antineoplásicos Imunológicos/química , Benzoatos/efeitos da radiação , Benzoatos/uso terapêutico , Bevacizumab/química , Bevacizumab/uso terapêutico , Linhagem Celular Tumoral , Corantes/efeitos da radiação , Corantes/uso terapêutico , Feminino , Humanos , Hipertermia Induzida/métodos , Indóis/efeitos da radiação , Indóis/uso terapêutico , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Fotoquimioterapia/métodos , Carcinoma Anaplásico da Tireoide/terapia
8.
Bioconjug Chem ; 31(1): 28-36, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479610

RESUMO

Cancer treatment has been founded traditionally on the three approaches of surgery, radiation, and chemotherapy with the latter recognized as the obvious systemic treatment approach applicable to disease that has spread. Although significant progress has been made over nearly 100 years of developing systemic treatments, it remains clear that use of the toxic agents involved is a two-edged sword with normal organ toxicities always needing to be balanced with and against administration of relevant therapeutic doses. With the advent of monoclonal antibodies targeted against tumor-associated antigens that could be used as carriers of potently toxic chemotherapy drugs, it was thought that such antibody-drug conjugates (ADCs) could engender the answer to the toxicity/therapeutic equation by shifting the equation more toward beneficial therapeutic efficacy. However, over 40 or so years, antibody-drug conjugates have not significantly affected the toxicity/therapy balance paradigm in most cancer indications, especially in solid tumors. Ideally, a further step may be required in that a non-tumor-targeted antibody-drug conjugate should be essentially nontoxic in its native administered form, with toxic effects unleashed only at the site of targeted tumors. A new approach that employs this principle is the use of an antibody-drug conjugate that is essentially nontoxic to normal tissues by virtue of requiring an extra step of light activation to become potent. We describe the preclinical data and first clinical results gained over the past few years by use of antibody-drug conjugates wherein the drug comprises a near-infrared photoactivatable dye delivered to tumors by a monoclonal antibody and is subsequently activated to a toxic entity solely at sites of tumors.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/química , Humanos , Imunoconjugados/química , Neoplasias/imunologia , Fototerapia/métodos
9.
Acta Biomater ; 83: 400-413, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465921

RESUMO

Multi-stimuli-responsive theranostic nanoplatform integrating functions of both imaging and multimodal therapeutics holds great promise for improving diagnosis and therapeutic efficacy. In this study, we reported a pH, glutathione (GSH) and hyaluronidase (HAase) triple-responsive nanoplatform for HER2 and CD44 dual-targeted and fluorescence imaging-guided PDT/PTT dual-therapy against HER2-overexpressed breast cancer. The nanoplatform was fabricated by functionalizing gold nanorods (GNRs) with hyaluronic acid (HA) bearing pendant hydrazide and thiol groups via Au-S bonds, and subsequently chemically conjugating 5-aminolevulinic acid (ALA), Cy7.5 and anti-HER2 antibody onto HA moiety for PDT, fluorescence imaging and active targeting, respectively. The resulting versatile nanoplatform GNR-HA-ALA/Cy7.5-HER2 had uniform sizes, favorable dispersibility, as well as pH, GSH and HAase triple-responsive drug release manner. In vitro studies demonstrated that HER2 and CD44 receptor-mediated dual-targeting strategy could significantly enhance the cellular uptake of GNR-HA-ALA/Cy7.5-HER2. Under near-infrared (NIR) irradiation, MCF-7 cells could efficiently generate reactive oxygen species (ROS) and heat, and be more efficiently killed by a combination of PDT and PTT as compared with individual therapy. Pharmacokinetic and biodistribution studies showed that the nanoplatform possessed a circulation half-life of 1.9 h and could be specifically delivered to tumor tissues with an accumulation ratio of 12.8%. Upon the fluorescence imaging-guided PDT/PTT treatments, the tumors were completely eliminated without obvious side effects. The results suggest that the GNR-HA-ALA/Cy7.5-HER2 holds great potential for breast cancer therapy. STATEMENT OF SIGNIFICANCE: A combination of photodynamic therapy (PDT) and photothermal therapy (PTT) is emerging as a promising cancer treatment strategy. However, its therapeutic efficacy is compromised by the nonspecific delivery and unintended release of photo-responsive agents. Herein, we developed a multifunctional theranostic nanoplatform GNR-HA-ALA/Cy7.5-HER2 with pH, glutathione and hyaluronidase triple-responsive drug release for HER2 and CD44 dual-targeted and fluorescence imaging-guided PDT/PTT therapy against breast cancer. We demonstrated that HER2 and CD44 receptors-mediated dual-targeting strategy significantly enhanced the cellular uptake of GNR-HA-ALA/Cy7.5-HER2. We also demonstrated that the combined PDT/PTT treatment had significantly superior antitumor effect than PDT or PTT alone both in vitro and in vivo. Therefore, GNR-HA-ALA/Cy7.5-HER2 could serve as a promising nanoplatform for HER2-positive breast cancer therapy.


Assuntos
Neoplasias da Mama , Ouro , Ácido Hialurônico , Hipertermia Induzida , Nanopartículas Metálicas , Nanotubos/química , Fotoquimioterapia , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacocinética , Ácido Aminolevulínico/farmacologia , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373175

RESUMO

Within the subtypes of breast cancer, those identified as triple negative for expression of estrogen receptor α (ESR1), progesterone receptor (PR) and human epidermal growth factor 2 (HER2), account for 10⁻20% of breast cancers, yet result in 30% of global breast cancer-associated deaths. Thus, it is critical to develop more targeted and efficacious therapies that also demonstrate less side effects. Selenium, an essential dietary supplement, is incorporated as selenocysteine (Sec) in vivo into human selenoproteins, some of which exist as anti-oxidant enzymes and are of importance to human health. Studies have also shown that selenium compounds hinder cancer cell growth and induce apoptosis in cancer cell culture models. The focus of this study was to investigate whether selenium-antibody conjugates could be effective against triple negative breast cancer cell lines using clinically relevant, antibody therapies targeted for high expressing breast cancers and whether selenium cytotoxicity was attenuated in normal breast epithelial cells. To that end, the humanized monoclonal IgG1 antibodies, Bevacizumab and Trastuzumab were conjugated with redox selenium to form Selenobevacizumab and Selenotrastuzumab and tested against the triple negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231 as well as a normal, immortalized, human mammary epithelial cell line, HME50-5E. VEGF and HER2 protein expression were assessed by Western. Although expression levels of HER2 were low or absent in all test cells, our results showed that Selenobevacizumab and Selenotrastuzumab produced superoxide (O2•-) anions in the presence of glutathione (GSH) and this was confirmed by a dihydroethidium (DHE) assay. Interestingly, superoxide was not elevated within HME50-5E cells assessed by DHE. The cytotoxicity of selenite and the selenium immunoconjugates towards triple negative cells compared to HME-50E cells was performed in a time and dose-dependent manner as measured by Trypan Blue exclusion, MTT assay and Annexin V assays. Selenobevacizumab and Selenotrastuzumab were shown to arrest the cancer cell growth but not the HME50-5E cells. These results suggest that selenium-induced toxicity may be effective in treating TNBC cells by exploiting different immunotherapeutic approaches potentially reducing the debilitating side effects associated with current TNBC anticancer drugs. Thus, clinically relevant, targeting antibody therapies may be repurposed for TNBC treatment by attachment of redox selenium.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Bevacizumab/farmacologia , Imunoconjugados/farmacologia , Compostos Organosselênicos/farmacologia , Trastuzumab/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Bevacizumab/química , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Compostos Organosselênicos/química , Receptor ErbB-2/análise , Superóxidos/análise , Trastuzumab/química , Neoplasias de Mama Triplo Negativas/patologia
11.
Int J Oncol ; 53(6): 2647-2658, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30221691

RESUMO

The present study aimed to investigate the effects of photothermal therapy with gold nanorods (AuNRs) or epidermal growth factor receptor monoclonal antibody­conjugated AuNRs (EGFRmAb­AuNRs) on hypopharyngeal carcinoma (HC) in nude mice. In addition, the associated signaling pathways were explored. Briefly, a subcutaneous transplantable hypopharyngeal tumor model was established in nude mice injected with FaDu human HC cells. A total of 70 nude mice were randomly divided into seven groups, each of which received a different treatment. Mice were treated with AuNRs, locally or through intravenous injection, whereas EGFRmAb or EGFRmAb­AuNRs were only administered locally. Near infrared spectroscopy (NIR) was also applied for plasmonic photothermal therapy (PPTT). The growth curve and the inhibitory rate for tumor growth were used to evaluate the effects of each treatment. Flow cytometry and the terminal­deoxynucleotidyl transferase dUTP nick end labeling assay were adopted to detect apoptosis of cells in the transplanted tumors. Reverse transcription­quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of target genes, respectively. Local treatment with AuNRs + NIR or EGFRmAb significantly inhibited tumor growth, and EGFRmAb conjugation further increased the inhibitory effects. Furthermore, there was a significant increase in apoptosis of tumor cells in the AuNRs + NIR, EGFRmAb and EGFRmAb­AuNRs + NIR groups; treatment with EGFRmAb­AuNRs + NIR induced the highest apoptotic effect. Mechanistic studies indicated that EGFRmAb­AuNRs + NIR may inhibit tumors through the AKT serine/threonine kinase (Akt) and DNA damage signaling pathways. In the AKT pathway, the mRNA and protein expression levels of phosphatase and tensin homolog were increased, whereas the expression levels of Akt and glycogen synthase kinase 3ß were decreased. In the DNA damage signaling pathway, the mRNA and protein expression levels of ATR serine/threonine kinase, checkpoint kinase 1 and p53 were enhanced, whereas phosphorylated­p53 protein expression was reduced. The present findings indicated that AuNRs + NIR inhibited HC tumor growth, and conjugating EGFRmAb to AuNRs further enhanced the inhibitory effects. EGFRmAb conjugation may increase the antitumor effects of AuNRs­induced PPTT by downregulating the phosphatidylinositol­3­kinase/Akt pathway and upregulating the DNA damage pathway. These findings may provide novel insights into tumor­targeting PPTT in vivo.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Ouro/administração & dosagem , Hipertermia Induzida/métodos , Neoplasias Hipofaríngeas/terapia , Administração Intravenosa , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Ouro/química , Ouro/farmacologia , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/metabolismo , Camundongos , Camundongos Nus , Nanotubos/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mater Sci Eng C Mater Biol Appl ; 91: 395-403, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033270

RESUMO

Although sorafenib (SFB) showed improved efficacy and much reduced the side effects in clinical liver cancer therapy, its therapeutic efficacy was still greatly limited due to short half-life in vivo as well as drug resistance. To solve these problems, we developed a novel SFB-loaded polymeric nanoparticle for targeted therapy of liver cancer. This polymeric nanoparticle, referred to NP-SFB-Ab, was fabricated from self-assembly of biodegradable block copolymers TPGS-b-poly(caprolactone) (TPGS-b-PCL) and Pluronic P123 and drug SFB, followed by conjugating the anti-GPC3 antibody. NP-SFB-Ab showed robust stability and achieve excellent SFB release in cell medium. The CLSM demonstrated that the Ab-conjugated NP exhibited much higher cellular uptake in HepG2 human liver cells than non-targeted NP. The MTT assay also confirmed that NP-SFB-Ab caused much greater cytotoxicity than non-targeted NP-SFB and free SFB. Finally, NP-SFB-Ab was proved to greatly inhibit the tumor growth of HepG2 xenograft-bearing nude mice without obvious side effects. Therefore, this NP-SFB-Ab provides a promising new approach for targeted therapy of hepatocellular carcinoma.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , Poloxaleno , Poliésteres , Sorafenibe , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células HeLa , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Poloxaleno/química , Poloxaleno/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Sorafenibe/química , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Future Oncol ; 13(28): 2537-2546, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29086616

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer with poor prognosis. Systemic chemotherapy is the primary treatment modality for the majority of patients. VEGF plays a key mitogen for MPM cells physiopathology. Bevacizumab, a monoclonal anti-VEGF antibody, was a rational approach to be tested in MPM. Based on the results of the Phase III IFCT-0701 mesothelioma avastin cisplatin pemetrexed study, cisplatin-pemetrexed-bevacizumab is now the accepted standard in France. The National Comprehensive Cancer Network guidelines have also included this combination as an option for standard front-line therapy. This review summarized the efficacy and safety data of bevacizumab in the treatment of patients with MPM.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/química , Bevacizumab/farmacologia , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Mesotelioma/mortalidade , Mesotelioma/patologia , Mesotelioma Maligno , Terapia de Alvo Molecular , Neoplasias Pleurais/mortalidade , Neoplasias Pleurais/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
14.
Pharm Res ; 34(12): 2817-2828, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110285

RESUMO

PURPOSE: To physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO). METHODS: Two monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins. RESULTS: The particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified. CONCLUSION: The extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cobre/química , Imunoglobulina G/química , Agregados Proteicos , Rituximab/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Catálise , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Soluções
15.
Future Oncol ; 13(28): 2515-2535, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28812378

RESUMO

Despite recent advances in metastatic lung cancer treatment with the advent of immune checkpoint inhibitors and molecules targeting addictive genomic abnormalities, prognosis of most of the patients remains unfavorable. Combination approaches with older drugs, such as bevacizumab, should be thus envisioned. Bevacizumab is a monoclonal anti-VEGF antibody, approved by the US FDA and the EMA in first-line and maintenance settings of advanced nonsquamous non-small-cell lung cancer (NSCLC) treatment, in association with platinum-based chemotherapy. In the years to come, bevacizumab might be associated with new molecular therapies or immuno-oncology drugs, in order to optimize response rates and overcome resistances. This review summarizes the pharmacologic properties, clinical efficacy and safety of bevacizumab in advanced lung cancer treatment, with a focus on NSCLC, EGFR-mutant NSCLC and small-cell lung cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/química , Bevacizumab/farmacologia , Biomarcadores , Ensaios Clínicos como Assunto , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Terapia de Alvo Molecular , Vigilância de Produtos Comercializados , Ensaios Clínicos Controlados Aleatórios como Assunto , Retratamento , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA