Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biomed Pharmacother ; 133: 111025, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254018

RESUMO

The present study aimed to evaluate the antileishmanial effect, the mechanisms of action and the association with miltefosine of Vernonia brasiliana essential oil against Leishmania infantum promastigotes. This essential oil was obtained by hydrodistillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS). The antileishmanial activity against L. infantum promastigotes and cytotoxicity on DH82 cells were evaluated by MTT colorimetric assay. Ultrastructural alterations were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential, in the production of reactive oxygen species, and analysis of apoptotic events were determined by flow cytometry. The association between the essential oil and miltefosine was evaluated using the modified isobologram method. The most abundant component of the essential oil was ß-caryophyllene (21.47 %). Anti-Leishmania assays indicated an IC50 of 39.01 ±â€¯1.080 µg/mL for promastigote forms after 72 h of treatment. The cytotoxic concentration for DH82 cells was 63.13 ±â€¯1.211 µg/mL after 24 h of treatment. The effect against L. infantum was proven through the ultrastructural changes caused by the oil, such as kinetoplast and mitochondrial swelling, vesicles in the flagellar pocket, discontinuity of the nuclear membrane, nuclear fragmentation and condensation, and loss of organelles. It was observed that the oil leads to a decrease in the mitochondrial membrane potential (35.10 %, p = 0.0031), increased reactive oxygen species production, and cell death by late apoptosis (17.60 %, p = 0.020). The combination of the essential oil and miltefosine exhibited an antagonistic effect. This study evidences the antileishmanial action of V. brasiliana essential oil against L. infantum promastigotes.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Vernonia , Animais , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Linhagem Celular , Cães , Interações Medicamentosas , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/metabolismo , Leishmania infantum/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/toxicidade , Sesquiterpenos Policíclicos/isolamento & purificação , Sesquiterpenos Policíclicos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Vernonia/química
2.
J Pharm Biomed Anal ; 191: 113635, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998105

RESUMO

Solanum paniculatum L. is species whose fruits are widely consumed in Brazil as a tonic beverage with higher content of steroidal saponins. In this work, we developed an analytical method for the quantification of the eight saponins present in the 70 % ethanol extract from the leaves using ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS). Besides, the eight spirostanic saponins were screened for in vitro antileishmanial activity against promastigote and amastigote forms of Leishmania (L.) amazonensis. Substances 1, 2 and 3 were found to be the most active compounds, with inhibitory concentration (IC50) values of 8.51 ± 4.38, 10.75 ± 6.85 and 10.45 ± 4.21 µM, respectively, against promastigote forms and effective concentration (EC50) values of >25, 17.73 ± 0.99 and 19.57 ± 0.84 µM, respectively, against amastigote forms. The cytotoxic test with compounds 1-3 evidenced low toxicity in murine macrophage cells, with values above 50 µM at concentration lower than 25 µM. These findings show that saponins 1-3 should be evaluated in further studies for the treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários , Saponinas , Solanum , Animais , Antiprotozoários/toxicidade , Brasil , Concentração Inibidora 50 , Camundongos , Folhas de Planta , Saponinas/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32734890

RESUMO

Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.


Assuntos
Hidrazonas/farmacologia , Leishmania/efeitos dos fármacos , Sapindus/química , Saponinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Hidrazonas/química , Hidrazonas/toxicidade , Leishmania/metabolismo , Leishmania/ultraestrutura , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/metabolismo , Leishmania braziliensis/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Reinfecção , Saponinas/química , Saponinas/toxicidade
4.
Eur J Med Chem ; 205: 112493, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745819

RESUMO

Leishmaniasis, a neglected tropical disease caused by parasites of the genus Leishmania, causes a serious burden of disease around the world, represents a threat to the life of millions of people, and therefore is a major public health problem. More effective and non-toxic new treatments are required, especially for visceral leishmaniasis, the most severe form of the disease. On the backdrop that dihydrobenzofurans have previously shown antileishmanial activity, we present here the synthesis of a set of seventy trans-2-phenyl-2,3-dihydrobenzofurans and evaluation of their in vitro activity against Leishmania donovani as well as a discussion of structure-activity relationships. Compounds 8m-o and 8r displayed the highest potency (IC50 < 2 µmol/L) and interesting selectivity of the antileishmanial activity over cytotoxicity against mammalian cells (SI > 4.6). Nonetheless, structural optimization as further requirement was inferred from the high clearance of the most potent compound (8m) observed during determination in vitro of its metabolic stability. On the other hand, chiral separation of 8m and subsequent biological evaluation of its enantiomers demonstrated no effect of chirality on activity and cytotoxicity. Holistic analysis of in silico ADME-like properties and ligand efficiency metrics by a simple scoring function estimating druglikeness highlighted compounds 16c, 18 and 23 as promising candidates for further development. Overall, the potential of trans-2-phenyl-2,3-dihydrobenzofurans as leishmanicidal agents was confirmed.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Leishmania donovani/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/toxicidade , Benzofuranos/química , Benzofuranos/toxicidade , Linhagem Celular , Técnicas de Química Sintética , Humanos , Estereoisomerismo , Relação Estrutura-Atividade
5.
Exp Parasitol ; 216: 107940, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562606

RESUMO

Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.


Assuntos
Alternativas aos Testes com Animais/métodos , Antiprotozoários/toxicidade , Citometria de Fluxo/métodos , Leishmania/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Adulto , Anfotericina B/farmacologia , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Leucócitos/parasitologia , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antimoniato de Meglumina/toxicidade , Microscopia Confocal , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/parasitologia , Fatores de Tempo , Adulto Jovem
6.
PLoS Negl Trop Dis ; 14(3): e0008068, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163414

RESUMO

Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 µM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Sensibilidade Parasitária/métodos , Nucleosídeos de Pirimidina/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Células 3T3 , Animais , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Nucleosídeos de Pirimidina/toxicidade
7.
Front Immunol ; 11: 345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194563

RESUMO

The palladacycle complex DPPE 1.2 was previously shown to inhibit Leishmania (Leishmania) amazonensis infection in vitro and in vivo. The present study aimed to evaluate the effect of DPPE 1.2 associated with a recombinant cysteine proteinase, rLdccys1, and the adjuvant Propionibacterium acnes on L. (L.) amazonensis infection in two mouse strains, BALB/c, and C57BL/6. Treatment with this association potentiated the leishmanicidal effect of DPPE 1.2 resulting in a reduction of parasite load in both strains of mice which was higher compared to that found in groups treated with either DPPE 1.2 alone or associated with P. acnes or rLdccys1. The reduction of parasite load in both mice strains was followed by immunomodulation mediated by an increase of memory CD4+ and CD8+ T lymphocytes, IFN-γ levels and reduction of active TGF-ß in treated animals. No infection relapse was observed 1 month after the end of treatment in mice which received DPPE 1.2 associated with rLdccys1 or rLdccys1 plus P. acnes in comparison to that exhibited by animals treated with DPPE 1.2 alone. Evaluation of serum levels of AST, ALT, urea, and creatinine showed no alterations among treated groups, indicating that this treatment schedule did not induce hepato or nephrotoxicity. These data indicate the potential use of this association as a therapeutic alternative for cutaneous leishmaniasis caused by L. (L) amazonensis.


Assuntos
Antiprotozoários/uso terapêutico , Cisteína Endopeptidases/uso terapêutico , Imunoterapia/métodos , Leishmaniose Cutânea/tratamento farmacológico , Propionibacterium acnes , Proteínas de Protozoários/uso terapêutico , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/toxicidade , Terapia Combinada , Cisteína Endopeptidases/administração & dosagem , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/toxicidade , Avaliação Pré-Clínica de Medicamentos , Feminino , Memória Imunológica , Interferon gama/metabolismo , Leishmania mexicana , Leishmaniose Cutânea/imunologia , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/toxicidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/toxicidade , Subpopulações de Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo
8.
Exp Parasitol ; 210: 107831, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926147

RESUMO

Babesia (B.) bovis is one of the main etiological agents of bovine babesiosis, causes serious economic losses to the cattle industry. Control of bovine babesiosis has been hindered by the limited treatment selection for B. bovis, thus, new options are urgently needed. We explored the drug library and unbiasedly screened 640 food and drug administration (FDA) approved drug compounds for their inhibitory activities against B. bovis in vitro. The initial screening identified 13 potentially effective compounds. Four potent compounds, namely mycophenolic acid (MPA), pentamidine (PTD), doxorubicin hydrochloride (DBH) and vorinostat (SAHA) exhibited the lowest IC50 and then selected for further evaluation of their in vitro efficacies using viability, combination inhibitory and cytotoxicity assays. The half-maximal inhibitory concentration (IC50) values of MPA, PTD, DBH, SAHA were 11.38 ± 1.66, 13.12 ± 4.29, 1.79 ± 0.15 and 45.18 ± 7.37 µM, respectively. Of note, DBH exhibited IC50 lower than that calculated for the commonly used antibabesial drug, diminazene aceturate (DA). The viability result revealed the ability of MPA, PTD, DBH, SAHA to prevent the regrowth of treated parasite at 4 × and 2 × of IC50. Antagonistic interactions against B. bovis were observed after treatment with either MPA, PTD, DBH or SAHA in combination with DA. Our findings indicate the richness of FDA approved compounds by novel potent antibabesial candidates and the identified potent compounds especially DBH might be used for the treatment of animal babesiosis caused by B. bovis.


Assuntos
Antiprotozoários/farmacologia , Babesia bovis/efeitos dos fármacos , Animais , Antiprotozoários/toxicidade , Babesia bovis/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , Cães , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Aprovação de Drogas , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Células Madin Darby de Rim Canino/efeitos dos fármacos , Ácido Micofenólico/farmacologia , Ácido Micofenólico/toxicidade , Pentamidina/farmacologia , Pentamidina/toxicidade , Bibliotecas de Moléculas Pequenas , Espectrometria de Fluorescência , Vorinostat/farmacologia , Vorinostat/toxicidade
9.
Yale J Biol Med ; 92(3): 369-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31543702

RESUMO

Toxoplasmosis, which affects more than a billion people worldwide, is a common parasitic infection caused by the obligate intracellular parasite, Toxoplasmagondii. Current treatment strategies have several limitations, including unwanted side effects and poor efficacy. Therefore, newer therapies are needed for toxoplasmosis. Drug repurposing and screening of a vast array of natural and/or synthetic compounds is a viable option for antiparasitic drug discovery. In this study, we screened 62 compounds comprising natural products (NPs) and FDA-approved (FDA) drugs, to identify the hit compounds that suppress the growth of T. gondii. To determine the parasite inhibitory potential of the compounds, host mammalian cells were infected with a transgenic T. gondii strain, and the viability of the parasite was evaluated by luminescence. Of the 62 compounds, tubericidin, sulfuretin, peruvoside, resveratrol, narasin and diacetoxyscirpenol of the natural product isolates, as well as bortezonib, 10-Hydroxycamtothecin, mebendazole, niflumic acid, clindamycin HCl, mecamylamine, chloroquine, mitomycin C, fenbendazole, daunorubicin, atropine, and cerivastatin of FDA molecules were identified as "hits" with ≥ 40 percent anti-parasite action. Additionally, mitomycin C, radicicol, naringenin, gitoxigenin, menadione, botulin, genistin, homobutein, and gelsemin HCl of the natural product isolates, as well as lomofungin, cyclocytidine, prazosin HCl, cerivastatin, camptothecin, flufenamic acid, atropine, daunorubicin, and fenbendazole of the FDA compounds exhibited cytotoxic activity, reducing the host viability by ≥ 30 percent. Our findings not only support the prospects of drug repurposing, but also indicate that screening a vast array of molecules may provide viable sources of alternative therapies for parasitic infection.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Materiais Biocompatíveis/farmacologia , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Toxoplasma/efeitos dos fármacos , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Aprovação de Drogas , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Humanos , Masculino , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/isolamento & purificação , Estados Unidos , United States Food and Drug Administration
10.
Exp Parasitol ; 199: 67-73, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797783

RESUMO

Leishmaniasis is one of the most important neglected diseases worldwide. It is a life-threatening disease and causes significant morbidity, long-term disability, and early death. Treatment involves disease control or use of intervention measures, although the currently used drugs require long-lasting therapy, and display toxicity and reduced efficacy. The use of natural products isolated from plants, such as lapachol, an abundant naphthoquinone naturally occurring in South American Handroanthus species (Tabebuia, Bignoniaceae), is a promising option for the treatment of leishmaniasis. In this study, we investigated the leishmanicidal activity of lapachol in vitro and in vivo against Leishmania infantum and L. amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Low cytotoxicity in HepG2 cells (3405.8 ±â€¯261.33 µM), good anti-Leishmania activity, and favorable selectivity indexes (SI) against promastigotes of both L. amazonensis (IC50 = 79.84 ±â€¯9.10 µM, SI = 42.65) and L. infantum (IC50 = 135.79 ±â€¯33.04 µM, SI = 25.08) were observed. Furthermore, anti-Leishmania activity assays performed on intracellular amastigotes showed good activity for lapachol (IC50 = 191.95 µM for L. amazonensis and 171.26 µM for L. infantum). Flow cytometric analysis demonstrated that the cytotoxic effect of lapachol in Leishmania promastigotes was caused by apoptosis-like death. Interestingly, the in vitro leishmanicidal effect of lapachol was confirmed in vivo in murine models of visceral and cutaneous leishmaniasis, as lapachol (25 mg/kg oral route for 24 h over 10 days) was able to significantly reduce the parasitic load in skin lesions, liver, and spleen, similar to amphotericin B, the reference drug. These results reinforce the therapeutic potential of lapachol, which warrants further investigations as an anti-leishmaniasis therapeutic.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Naftoquinonas/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Hep G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/farmacologia , Naftoquinonas/toxicidade , Carga Parasitária , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/parasitologia , Distribuição Aleatória , Pele/parasitologia , Baço/parasitologia , Tabebuia/química
11.
Chem Biol Drug Des ; 92(3): 1585-1596, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729080

RESUMO

Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2-substituted-1H-benzo[d]imidazole derivatives (9a-d) showing affinity in the submicromolar range (Ki  = 0.15-0.69 µM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intracellular amastigotes of Leishmania infantum with the best result being obtained with derivative 9d (IC50  = 6.8 µM), although with some degree of cytotoxicity (CC50  = 8.0 µM on PMM and CC50  = 32.0 µM on MCR-5). In silico molecular docking studies and ADME-Tox properties prediction were performed to validate the hypothesis of the interaction with the intended target and to assess the drug-likeness of these derivatives.


Assuntos
Benzimidazóis/química , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Leishmania mexicana/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/síntese química , Antiprotozoários/metabolismo , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Benzimidazóis/metabolismo , Benzimidazóis/uso terapêutico , Benzimidazóis/toxicidade , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/uso terapêutico , Inibidores de Cisteína Proteinase/toxicidade , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Leishmaniose/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo
12.
BMC Res Notes ; 11(1): 312, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776448

RESUMO

OBJECTIVE: Objective of the study was to evaluate in vivo anti-plasmodial activities of Combretum molle seed extract. METHODS: As a standard protocol, initially the acute toxicity of the plant seed extract was checked following single administration of crude seed extract of the plant at doses 500, 1000 and 2000 mg/kg. This was followed by evaluation of anti-plasmodial activity of crude seed extract of the plant following a 4 days suppressive test. RESULTS: In acute toxicity study sign of toxicity was not observed. Also physical and behavioural changes were not detected. The crude seed extract of C. molle showed, 63.5% parasite suppression in mice infected with Plasmodium berghei ANKA (PbA) murine parasite and treated with 250 mg/kg of seed extract of C. molle. Relative survival time of mice treated with 250 mg/kg showed significantly longer survival than the negative control, while lower than mice treated with the standard drug, chloroquine. The plant seed extract on day-4 post-infection showed significant (P < 0.05) protection against body weight reduction, high body temperature and hemolysis of RBC at relatively lower doses. At optimum dose the crude extract of C. molle seed has good chemo-suppressive activity against PbA parasite and improved some clinical symptoms of malaria in mice.


Assuntos
Antiprotozoários/farmacologia , Combretum , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Sementes , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/toxicidade , Modelos Animais de Doenças , Etiópia , Feminino , Malária/parasitologia , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/toxicidade
13.
PLoS One ; 13(5): e0196424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799841

RESUMO

Leishmaniasis is one of the diverse and neglected tropical diseases. Embryo-toxicity of drugs has always been a major concern. Chick embryo is a preclinical model relevant in the assessment of adverse effects of drugs. The current study aimed to assess embryonic histopathological disorders and amniotic fluid biochemical changes following meglumine antimoniate treatment. The alteration of vascular branching pattern in the chick's extra-embryonic membrane and exploration of molecular cues to early embryonic vasculogenesis and angiogenesis were also quantified. Embryonated chicken eggs were treated with 75 or 150 mg/kg of meglumine antimoniate. Embryo malformations, growth retardation and haemorrhages on the external body surfaces were accompanied by histopathological lesions in the brain, kidney, liver and heart in a dose-dependent manner. Significant rise occurred in the biochemical indices of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase and amylase in the amniotic fluid. Quantification of the extra-embryonic membrane vasculature showed that the anti-angiogenic and anti-vasculogenic effects of the drug were revealed by a significant decrease in fractal dimension value and mean capillary area. The relative expression levels of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 mRNA also significantly reduced. Concerns of a probable teratogenicity of meglumine antimoniate were established by data presented in this study. It is concluded that tissue lesions, amniotic fluid disturbance, altered early extra-embryonic vascular development and gene expression as well as the consecutive cascade of events, might eventually lead to developmental defects in embryo following meglumine antimoniate treatment. Therefore, the use of meglumine antimoniate during pregnancy should be considered as potentially embryo-toxic. Hence, physicians should be aware of such teratogenic effects and limit the use of this drug during the growing period of the fetus, particularly in rural communities. Further pharmaceutical investigations are crucial for planning future strategies.


Assuntos
Antiprotozoários/toxicidade , Meglumina/toxicidade , Compostos Organometálicos/toxicidade , Teratogênicos/toxicidade , Anormalidades Induzidas por Medicamentos/patologia , Animais , Proteínas Aviárias/genética , Vasos Sanguíneos/anormalidades , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/embriologia , Embrião de Galinha , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica/efeitos dos fármacos , Antimoniato de Meglumina , Modelos Animais , Neovascularização Fisiológica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Z Naturforsch C J Biosci ; 73(3-4): 153-160, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28917086

RESUMO

Two new limonoids, kostchyienones A (1) and B (2), along with 12 known compounds 3-14 were isolated from the roots of Pseudocedrela kostchyi. Compound (7) was isolated for the first time from a natural source. Their structures were elucidated on the basis of spectroscopic evidence. Compounds 1-6 and 13-14 gave IC50 values ranging from 0.75 to 5.62 µg/mL for antiplasmodial activity against chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains of Plasmodium falciparum. Compound 5 showed moderate potential cytotoxicity against the HEK239T cell line with an IC50 value of 22.2±0.89 µg/mL. The antiplasmodial efficacy of the isolated compounds supports the medicinal value of this plant and its potential to provide novel antimalarial drugs.


Assuntos
Antiprotozoários/química , Limoninas/química , Meliaceae/química , Extratos Vegetais/química , Antiprotozoários/toxicidade , Limoninas/toxicidade , Extratos Vegetais/toxicidade , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacos
15.
J Bioenerg Biomembr ; 49(6): 473-483, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29147831

RESUMO

Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas's disease.


Assuntos
Antiprotozoários/isolamento & purificação , Ecossistema , Extratos Vegetais/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/toxicidade , Brasil , Linhagem Celular , Doença de Chagas/prevenção & controle , Flavonoides/toxicidade , Humanos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Quercetina/toxicidade
16.
Exp Parasitol ; 183: 160-166, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28916456

RESUMO

Acanthamoeba species are pathogenic protozoa which account for amoebic keratitis, conjunctivitis and granulomatous amoebic encephalitis. These amoebae form cysts which resist drugs and more effective acanthamoebicidal agents are needed. Medicinal plants could be useful in improving the current treatment strategies for Acanthamoeba infections. In the present study, we examined the amoebicidal effects of Pericampylus glaucus (Lam.) Merr., a medicinal plant used for the treatment of conjunctivitis in Malaysia. Pathogenic Acanthamoeba triangularis were isolated from environmental water samples and treated with different concentrations of fractions obtained from Pericampylus glaucus (Lam.) Merr. as well as main constituents for 24-72 h. Chlorhexidine was used as a reference drug. Ethanol fraction of stem showed significant (p < 0.05) inhibition of trophozoites survival. Betulinic acid and periglaucine A from this plant at 100 µg/mL inhibited more than 70% survival of both cysts and trophozoites. The calculated therapeutic index for betulinic acid and periglaucine A was 170 and 1.5 for trophozoites stage and 3.75 and 8.5 for cysts stage. The observed amoebicidal efficacies indicate the beneficial aspects of this plant in the treatment of Acanthamoeba infection. Periglaucine A could also be of value for the treatment of Acanthamoeba infection.


Assuntos
Acanthamoeba/efeitos dos fármacos , Alcaloides/farmacologia , Antiprotozoários/farmacologia , Menispermaceae/química , Triterpenos/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/toxicidade , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Triterpenos Pentacíclicos , Espectroscopia Fotoeletrônica , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Folhas de Planta/química , Caules de Planta/química , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Triterpenos/isolamento & purificação , Triterpenos/toxicidade , Ácido Betulínico
17.
Pharm Biol ; 55(1): 1787-1791, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28524742

RESUMO

CONTEXT: Piqueria trinervia Cav. (Asteraceae) is a plant species with a long history in traditional medicine to cure diarrhoea and other digestive disorders. OBJECTIVE: The study investigates the antigiardial activity of piquerol, trinervinol, red oil and two fractions (F1 and F2) from P. trinervia. MATERIALS AND METHODS: P. trinervia was collected in the Ajusco in Mexico City. Aerial parts were ground and mixed with water to obtain the extract, which was treated with dichloromethane to isolate piquerol and trinervinol (P & T). Remnants were the red oil, fractions 1 and 2 (RO, F1 & F2). Trophozoites of Giardia intestinalis were treated with P, T, RO, F1 and F2 at different concentrations (0.78-200 µg/mL) for 48 h. Antigiardial activity was measured using the methylene blue reduction, and the cytotoxicity assayed on human fibroblasts and Vero cells by reduction of tetrazolium salts. RESULTS: Trinervinol and piquerol showed antigiardial activity with an IC50 = 2.03 and 2.42 µg/mL, and IC90 = 13.03 and 8.74 µg/mL, respectively. The concentrations of trinervinol (CC50 = 590 µg/mL) and piquerol (CC50 = 501 µg/mL) were not cytotoxic to human fibroblasts. CONCLUSIONS: Compounds from P. trinervia showed antigiardial activity; to enhance this activity, piquerol and trinervinol can be chemically modified.


Assuntos
Antiprotozoários/farmacologia , Asteraceae/química , Giardia lamblia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Giardia lamblia/crescimento & desenvolvimento , Concentração Inibidora 50 , Cloreto de Metileno/química , México , Testes de Sensibilidade Parasitária , Fitoterapia , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plantas Medicinais , Solventes/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Células Vero
18.
Pharm Biol ; 55(1): 1780-1786, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28524774

RESUMO

CONTEXT: Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease characterized by lesional polymorphism and the commitment of skin surface. Previous reports demonstrated that the Citrus genus possess antimicrobial activity. OBJECTIVE: This study evaluated the anti-L. amazonensis activity of Citrus sinensis (L.) Osbeck (Rutaceae) extracts. MATERIALS AND METHODS: Citrus sinensis dried leaves were subjected to maceration with hexane (CH), ethyl acetate (CEA), dichloromethane/ethanol (CD/Et - 1:1) or ethanol/water (CEt/W - 7:3). Leishmania amazonensis promastigotes were treated with C. sinensis extracts (1-525 µg/mL) for 120 h at 27 °C. Ultrastructure alterations of treated parasites were evaluated by transmission electron microscopy. Cytotoxicity of the extracts was assessed on RAW 264.7 and J774.G8 macrophages after 48-h treatment at 37 °C using the tetrazolium assay. In addition, Leishmania-infected macrophages were treated with CH and CD/Et (10-80 µg/mL). RESULTS: CH, CD/Et and CEA displayed antileishmanial activity with 50% inhibitory activity (IC50) of 25.91 ± 4.87, 54.23 ± 3.78 and 62.74 ± 5.04 µg/mL, respectively. Parasites treated with CD/Et (131.2 µg/mL) presented severe alterations including mitochondrial swelling, lipid body formation and intense cytoplasmic vacuolization. CH and CD/Et demonstrated cytotoxic effects similar to that of amphotericin B in the anti-amastigote assays (SI of 2.16, 1.98 and 1.35, respectively). Triterpene amyrins were the main substances in CH and CD/Et extracts. In addition, 80 µg/mL of CD/Et reduced the number of intracellular amastigotes and the percentage of infected macrophages in 63% and 36%, respectively. CONCLUSION: The results presented here highlight C. sinensis as a promising source of antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Citrus sinensis/química , Leishmania/efeitos dos fármacos , Macrófagos/parasitologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citrus sinensis/toxicidade , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Leishmania/crescimento & desenvolvimento , Leishmania/ultraestrutura , Camundongos , Testes de Sensibilidade Parasitária , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta/toxicidade , Plantas Medicinais , Células RAW 264.7 , Solventes/química
19.
J Inorg Biochem ; 172: 9-15, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414928

RESUMO

Leishmaniasis is an infection caused by protozoa of the genus Leishmania and transmitted by sandflies. Current treatments are expensive and time-consuming, involving Sb(V)-based compounds, lipossomal amphotericin B and miltefosine. Recent studies suggest that inhibition of trypanothione reductase (TR) could be a specific target in the development of new drugs because it is essential and exclusive to trypanosomatids. This work presents the synthesis and characterization of new iminodibenzyl derivatives (dado) with ethylenediamine (ea), ethanolamine (en) and diethylenetriamine (dien) and their copper(II) complexes. Computational methods indicated that the complexes were highly lipophilic. Pro-oxidant activity assays by oxidation of the dihydrorhodamine (DHR) fluorimetric probe showed that [Cu(dado-ea)]2+ has the highest rate of oxidation, independent of H2O2 concentration. The toxicity to L. amazonensis promastigotes and RAW 264,7 macrophages was assessed, showing that dado-en was the most active new compound. Complexation to copper did not have an appreciable effect on the toxicity of the compounds.


Assuntos
Benzilaminas/química , Leishmania/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Benzilaminas/farmacologia , Benzilaminas/toxicidade , Simulação por Computador , Cobre/química , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Leishmania/enzimologia , Ligantes , Macrófagos/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução
20.
PLoS One ; 12(3): e0174024, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319176

RESUMO

Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10-8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antiprotozoários/farmacologia , Ampicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/toxicidade , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Apoptose/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , DNA de Protozoário/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana , Humanos , Leishmania/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Fatores de Tempo , Trypanosoma/efeitos dos fármacos , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA