Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Infect Dis ; 140: 62-69, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176643

RESUMO

OBJECTIVES: This study aimed to investigate the association between drug exposure and adverse events (AEs) during the standardized multidrug-resistant tuberculosis (MDR-TB) treatment, as well as to identify predictive drug exposure thresholds. METHODS: We conducted a prospective, observational multicenter study among participants receiving standardized MDR-TB treatment between 2016 and 2019 in China. AEs were monitored throughout the treatment and their relationships to drug exposure (e.g., the area under the drug concentration-time curve from 0 to 24 h, AUC0-24 h) were analyzed. The thresholds of pharmacokinetic predictors of observed AEs were identified by boosted classification and regression tree (CART) and further evaluated by external validation. RESULTS: Of 197 study participants, 124 (62.9%) had at least one AE, and 15 (7.6%) experienced serious AEs. The association between drug exposure and AEs was observed including bedaquiline, its metabolite M2, moxifloxacin and QTcF prolongation (QTcF >450 ms), linezolid and mitochondrial toxicity, cycloserine and psychiatric AEs. The CART-derived thresholds of AUC0-24 h predictive of the respective AEs were 3.2 mg·h/l (bedaquiline M2); 49.3 mg·h/l (moxifloxacin); 119.3 mg·h/l (linezolid); 718.7 mg·h/l (cycloserine). CONCLUSIONS: This study demonstrated the drug exposure thresholds predictive of AEs for key drugs against MDR-TB treatment. Using the derived thresholds will provide the knowledge base for further randomized clinical trials of dose adjustment to minimize the risk of AEs.


Assuntos
Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Ciclosserina/efeitos adversos , Diarilquinolinas/uso terapêutico , Linezolida/efeitos adversos , Moxifloxacina/uso terapêutico , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
J Complement Integr Med ; 21(1): 38-45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38140744

RESUMO

OBJECTIVES: Preclinical evidence is needed to assess drug-metabolite behaviour in compromised liver function for developing the best antitubercular treatment (ATT) re-introduction regimen in drug-induced liver injury (DILI). The pharmacokinetic behavior of rifampicin (RMP) and its active metabolite des-acetyl-rifampicin (DARP) in DILI's presence is unknown. To study the pharmacokinetic behavior of RMP and DARP in the presence of carbon tetrachloride (CCl4) plus ATT-DILI in rats. METHODS: Thirty rats used in the experiment were divided equally into six groups. We administered a single 0.5 mL/kg CCl4 intraperitoneal injection in all rats. Groups II, III, IV, and V were started on daily oral RMP alone, RMP plus isoniazid (INH), RMP plus pyrazinamide (PZA), and the three drugs INH, RMP, and PZA together, respectively, for 21-days subsequently. Pharmacokinetic (PK) sampling was performed at 0, 0.5, 1, 3, 6, 12, and 24 h post-dosing on day 20. We monitored LFT at baseline on days-1, 7, and 21 and sacrificed the rats on the last day of the experiment. RESULTS: ATT treatment sustained the CCl4-induced liver injury changes. A significant rise in mean total bilirubin levels was observed in groups administered rifampicin. The triple drug combination group demonstrated 1.43- and 1.84-times higher area-under-the-curve values of RMP (234.56±30.66 vs. 163.55±36.14 µg h/mL) and DARP (16.15±4.50 vs. 8.75±2.79 µg h/mL) compared to RMP alone group. Histological and oxidative stress changes supported underlying liver injury and PK alterations. CONCLUSIONS: RMP metabolism inhibition by PZA, more than isoniazid, was well preserved in the presence of underlying liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Rifampina/farmacocinética , Rifampina/uso terapêutico , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Ratos Wistar , Tetracloreto de Carbono , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
3.
Antimicrob Agents Chemother ; 67(5): e0170022, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37097151

RESUMO

Although cycloserine is a recommended drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) according to World Health Organization (WHO), few studies have reported on pharmacokinetics (PK) and/or pharmacodynamics (PD) data of cycloserine in patients with standardized MDR-TB treatment. This study aimed to estimate the population PK parameters for cycloserine and to identify clinically relevant PK/PD thresholds, as well as to evaluate the current recommended dosage. Data from a large cohort with full PK curves was used to develop a population PK model. This model was used to estimate drug exposure in patients with MDR-TB from a multicentre prospective study in China. The classification and regression tree was used to identify the clinically relevant PK/PD thresholds. Probability of target attainment was analyzed to evaluate the currently recommended dosing strategy. Cycloserine was best described by a two-compartment disposition model. A percentage of time concentration above MICs (T>MIC) of 30% and a ratio of area under drug concentration-time curve (AUC0-24h) over MIC of 36 were the valid predictors for 6-month sputum culture conversion and final treatment outcome. Simulations showed that with WHO-recommended doses (500 mg and 750 mg for patients weighing <45 kg and ≥45 kg), the probability of target attainment exceeded 90% at MIC ≤16 mg/L in MGIT for both T>MIC of 30% and AUC0-24h/MIC of 36. New clinically relevant PK/PD thresholds for cycloserine were identified in patients with standardized MDR-TB treatment. WHO-recommended doses were considered adequate for the MGIT MIC distribution in our cohort of Chinese patients with MDR-TB.


Assuntos
Ciclosserina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Ciclosserina/uso terapêutico , Ciclosserina/farmacocinética , Antituberculosos/farmacocinética , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
4.
J Antimicrob Chemother ; 78(4): 953-964, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794692

RESUMO

BACKGROUND: The hollow-fibre system model of tuberculosis (HFS-TB) has been endorsed by regulators; however, application of HFS-TB requires a thorough understanding of intra- and inter-team variability, statistical power and quality controls. METHODS: Three teams evaluated regimens matching those in the Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) study, plus two high-dose rifampicin/pyrazinamide/moxifloxacin regimens, administered daily for up to 28 or 56 days against Mycobacterium tuberculosis (Mtb) under log-phase growth, intracellular growth or semidormant growth under acidic conditions. Target inoculum and pharmacokinetic parameters were pre-specified, and the accuracy and bias at achieving these calculated using percent coefficient of variation (%CV) at each sampling point and two-way analysis of variance (ANOVA). RESULTS: A total of 10 530 individual drug concentrations, and 1026 individual cfu counts were measured. The accuracy in achieving intended inoculum was >98%, and >88% for pharmacokinetic exposures. The 95% CI for the bias crossed zero in all cases. ANOVA revealed that the team effect accounted for <1% of variation in log10 cfu/mL at each timepoint. The %CV in kill slopes for each regimen and different Mtb metabolic populations was 5.10% (95% CI: 3.36%-6.85%). All REMoxTB arms exhibited nearly identical kill slopes whereas high dose regimens were 33% faster. Sample size analysis revealed that at least three replicate HFS-TB units are needed to identify >20% difference in slope, with a power of >99%. CONCLUSIONS: HFS-TB is a highly tractable tool for choosing combination regimens with little variability between teams, and between replicates.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacocinética , Moxifloxacina/farmacologia , Reprodutibilidade dos Testes , Modelos Biológicos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Quimioterapia Combinada
5.
Int J Tuberc Lung Dis ; 26(8): 766-774, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35898135

RESUMO

BACKGROUND: Pharmacokinetic variability arising from drug-drug interactions and pharmacogenetics may influence the effectiveness of treatment regimens for TB. The Improving Treatment Success Trial compared the WHO-recommended standard treatment in TB patients with an experimental regimen substituting ethambutol with moxifloxacin (MFX) in Durban, South Africa.METHODS: Non-linear mixed-effects modelling was used to investigate the population pharmacokinetics of rifampicin (RIF), isoniazid (INH) and pyrazinamide (PZA). A total of 25 single-nucleotide polymorphisms, including pregnane-X-receptor, were selected for analysis.RESULTS: TB drug concentrations were available in a subset of 101 patients: 58 in the MFX arm and 43 in the control arm. Baseline characteristics were well-balanced between study arms: median age and weight were respectively 36 years and 57.7 kg; 75.2% of the patients were living with HIV. Although weight-based drug dosing was the same in the two arms, we found that RIF exposure was increased by 19.3%, INH decreased by 19% and PZA decreased by 19.2% when administered as part of the MFX-containing regimen. Genetic variation in pregnane-X-receptor (rs2472677) was associated with a 25.3% reduction in RIF exposure.CONCLUSION: Optimised weight-based TB treatment dosing is essential when RIF, INH and PZA are co-administered with fluoroquinolones. The reduction in RIF exposure associated with pharmacogenetic variation is worrying.


Assuntos
Antituberculosos , Tuberculose , Humanos , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Isoniazida , Moxifloxacina , Pregnanos , Pirazinamida , Rifampina , África do Sul , Tuberculose/tratamento farmacológico
6.
Microbiol Spectr ; 10(1): e0247721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170994

RESUMO

Bedaquiline (BDQ) was historically listed by the World Health Organization (WHO) in 2018 as the preferred option for rifampin-resistant tuberculosis (RR-TB) and multidrug-resistant tuberculosis (MDR-TB). However, when there is no other effective regimen, the side effects and weaknesses of BDQ limit its use of MDR-TB. There is a black box warning in the package insert of BDQ to warn patients and health care professionals that this drug may increase the risk of unexplained mortality and QT prolongation, which may lead to abnormal and potentially fatal cardiac rhythm. In addition, the phenomenon of elevated liver enzymes in clinical trials of BDQ is a potential sign of hepatotoxicity. Therefore, it is still a medical need to develop new compounds with better safety profiles, patient compliance, affordability, and the ability to retain the efficacy of BDQ. After extensive lead generation and optimization, a new analog, sudapyridine (WX-081), was selected as a potential new antituberculosis candidate to move into clinical trials. Here, we evaluated WX-081's overall preclinical profile, including efficacy, pharmacokinetics, and toxicology. The in vitro activity of WX-081 against drug-sensitive and drug-resistant tuberculosis was comparable to that of BDQ, and there was comparable efficacy between WX-081 and BDQ in both acute and chronic mouse tuberculosis models using low-dose aerosol infection. Moreover, WX-081 improved pharmacokinetic parameters and, more importantly, had no adverse effects on blood pressure, heart rate, or qualitative ECG parameters from nonclinical toxicology studies. WX-081 is under investigation in a phase 2 study in patients. IMPORTANCE This study is aimed at chemotherapy for multidrug-resistant tuberculosis (MDR-TB), mainly to develop new anti-TB drugs to kill Mycobacterium tuberculosis, a microorganism with strong drug resistance. In this study, the structure of a potent antituberculosis compound, bedaquiline (BDQ), was optimized to generate a new compound, sudapyridine (WX-081). This experiment showed that its efficacy was similar to that of BDQ, its cardiotoxicity was lower, and it had good kinetic characteristics. This compound will certainly achieve significant results in the control and treatment of tuberculosis in the future.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Tuberculose , Animais , Cães , Feminino , Humanos , Masculino , Antituberculosos/administração & dosagem , Antituberculosos/efeitos adversos , Antituberculosos/química , Antituberculosos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos
7.
Eur J Med Chem ; 223: 113657, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34217060

RESUMO

As a continuation of our research on antimycobacterial agents, a series of novel quinoxaline-1,4-di-N-oxides (QdNOs) containing various nitrogenous heterocyclic moieties at the R6 position were designed and synthesized. Antimycobacterial activities, as well as the cytotoxic effects, of the compounds were assayed. Four compounds (6b, 6f, 6n, and 6o), characterized by 2-carboxylate ethyl or benzyl ester, 6-imidazolyl or 1,2,4-triazolyl, and a 7-fluorine group, exhibited the most potent antimycobacterial activity against M.tb strain H37Rv (MIC ≤ 0.25 µg/mL) with low toxicity in VERO cells (SI = 169.3-412.1). Compound 6o also exhibited excellent antimycobacterial activity in an M.tb-infected macrophage model and was selected for further exploration of the mode of antimycobacterial action of QdNOs. The results showed that compound 6o was capable of disrupting membrane integrity and disturbing energy homeostasis in M.tb. Furthermore, compound 6o noticeably increased cellular ROS levels and, subsequently, induced autophagy in M.tb-infected macrophages, possibly indicating the pathways of QdNOs-mediated inhibition of intracellular M.tb replication. The in vivo pharmacokinetic (PK) profiles indicated that compounds 6o was acceptably safe and possesses favorable PK properties. Altogether, these findings suggest that compound 6o is a promising antimycobacterial candidate for further research.


Assuntos
Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinoxalinas/química , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/fisiologia , Óxidos/química , Quinoxalinas/farmacocinética , Quinoxalinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Vero
8.
Mil Med Res ; 8(1): 34, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34074345

RESUMO

BACKGROUND: The traditional Chinese medicine NiuBeiXiaoHe (NBXH) extract and Chinese medicine preparation JieHeWan (JHW) exhibit anti-tuberculosis effects. The anti- tuberculosis effect of NBXH was compared with that of JHW to elucidate the mechanism of action of NBXH. METHODS: BALB/c mice aged 6-8 weeks were randomly divided into a normal control group, Tuberculosis (TB) model group, JHW treatment group, and NBXH treatment group. After 3 and 13 weeks of treatment, the therapeutic effect in each group was evaluated by comparing lung histopathology, lung and liver colony counts, the number of spots representing effector T cells secreting IFN-γ in an ELISPOT, and the levels of Th1, Th2, and Th17 cytokines, which were measured by a cytometric bead array (CBA). Mouse RNA samples were subjected to transcriptome sequencing. RESULTS: After 13 weeks of treatment, the mean histopathological lesion area of the NBXH group was significantly smaller than that of the TB model group (P < 0.05). Compared with those in the TB model group, the lung colony counts in the JHW and NBXH groups were significantly decreased (P < 0.05), and the IL-2 and IL-4 levels in the NBXH group were significantly increased (P < 0.05). NBXH partly restored significant changes in gene expression caused by Mycobacterium tuberculosis (M. tuberculosis) infection. According to GO and KEGG analyses, the changes in biological process (BP), cell composition (CC) and molecular function (MF) terms and in signaling pathways caused by NBXH and JHW treatment were not completely consistent, but they were mainly related to the immune response and inflammatory response in the mouse TB model. CONCLUSIONS: NBXH had therapeutic effects similar to those of JHW in improving lung histopathology, reducing lung colony counts, and regulating the levels of cytokines. NBXH restored significant changes in gene expression and repaired cell damage caused by M. tuberculosis infection by regulating immune-related pathways, which clarified the mechanism of action of NBXH.


Assuntos
Antituberculosos/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Medicina Tradicional Chinesa/normas , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/normas , Feminino , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Medicina Tradicional Chinesa/estatística & dados numéricos , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico
9.
Biopharm Drug Dispos ; 42(7): 329-337, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117648

RESUMO

Levofloxacin is considered a key component of a multidrug-resistant tuberculosis (MDR-TB) regimen. However, there is considerable concern regarding the subtherapeutic concentrations of the currently used doses and the development of drug resistance. Therefore, this study aimed to describe the population pharmacokinetics (PPK) of oral levofloxacin in healthy volunteers and to evaluate the probability of target attainment (PTA) in an attempt to optimize the dosing regimens for MDR-TB therapy. Data of levofloxacin in healthy volunteers from a previous study were used to construct a PPK model. Monte Carlo simulations were performed to derive the PTAs of various regimens. A two-compartment model with linear elimination and transit absorption compartments best described the pharmacokinetics (PK) of levofloxacin. The estimated PK parameters (interindividual variability, %) were: apparent clearance 8.32 L h-1 (22.6%), apparent central volume of distribution 35.8 L (45.2%), apparent peripheral volume of distribution 39.7 L, intercompartmental clearance 40.6 L h-1 (43.8%), absorption rate constant 7.45 h-1 (150%), mean absorption transit time 0.355 h (52.4%), and total number of transit compartments 6.01 (131.9%). Monte Carlo simulations using levofloxacin 750-1000 mg yielded a probability of achieving a target free area under the concentration-time curve/minimum inhibitory concentration (MIC) of 100 at greater than 90% for Mycobacterium tuberculosis with an MIC < 0.5 mg L-1 , while a dose of 1500 mg was required for strains with an MIC of 1 mg L-1 . A higher dose of levofloxacin might be needed to treat tuberculosis. However, further studies on the efficacy and safety of this dose are needed to confirm our findings.


Assuntos
Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Levofloxacino/administração & dosagem , Levofloxacino/farmacocinética , Modelos Biológicos , Administração Oral , Adolescente , Adulto , Simulação por Computador , Voluntários Saudáveis , Humanos , Levofloxacino/sangue , Masculino , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto Jovem
10.
Clin Pharmacol Drug Dev ; 10(6): 634-646, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33378139

RESUMO

Tuberculosis (TB) continues to be a serious threat to public health throughout the world. Newer treatments are needed that could offer simplified regimens with activity against both drug-sensitive and drug-resistant bacilli, while optimizing safety. Pretomanid (PA-824), a nitroimidazooxazine compound, is a new drug for the treatment of pulmonary TB that was recently approved in the United States and Europe in the context of a regimen combined with bedaquiline and linezolid. This phase 1 double-blind, randomized, placebo-controlled crossover study specifically examined the effect of single-dose administration of pretomanid 400 or 1000 mg and pretomanid 400 mg plus moxifloxacin 400 mg on the QTc interval in 74 healthy subjects. Subjects were fasting at the time of drug administration. Pretomanid concentrations following single 400- or 1000-mg doses were not associated with any QT interval prolongation of clinical concern. Moxifloxacin did not alter the pharmacokinetics of pretomanid, and the effect of pretomanid 400 mg plus moxifloxacin 400 mg on the individually corrected QT interval was consistent with the effect of moxifloxacin alone. Both drugs were generally well tolerated. Although supratherapeutic exposure of pretomanid relative to the now-recommended dosing with food was not achieved, these findings contribute to the favorable assessment of cardiac safety for pretomanid.


Assuntos
Antituberculosos/administração & dosagem , Síndrome do QT Longo/induzido quimicamente , Moxifloxacina/administração & dosagem , Nitroimidazóis/administração & dosagem , Adolescente , Adulto , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Interações Medicamentosas , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Moxifloxacina/efeitos adversos , Nitroimidazóis/efeitos adversos , Nitroimidazóis/farmacocinética , Adulto Jovem
11.
Eur J Pharm Biopharm ; 158: 294-312, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33309844

RESUMO

Current therapy of tuberculosis (TB) has several limitations, such as risk of liver injury and intestinal dysbiosis due to frequent oral administration of antibiotics. Transdermal administration could be used to improve antibiotic delivery for treatment of Mycobacterium tuberculosis infection. Therefore, we developed a novel approach, using hydrogel-forming microneedle (MN) arrays to transdermally deliver TB drugs, namely rifampicin, isoniazid, pyrazinamide and ethambutol, which have different physicochemical properties. These drugs were individually prepared into three types of drug reservoirs, including lyophilised tablets, directly compressed tablets and poly(ethylene glycol) tablets. Formulations of each drug reservoir type were optimised to achieve a rapidly dissolving tablet, and further integrated with hydrogel-forming MN arrays for in vitro permeation studies. Three types of hydrogel formulation were manufactured using different type of polymers and crosslinking processes. These MN arrays were then evaluated in terms of swelling ability, morphology and physical properties. Results of solute diffusion studies showed that drug permeation across the swollen hydrogel membrane was affected mostly by physiochemical properties and functional groups of each drug. In the in vitro studies, the amount of permeated drug through the hydrogel-forming MN arrays across the dermatomed neonatal porcine skin was affected by the drug solubility and reservoir design. The highest permeation of rifampicin (3.64 mg) and ethambutol (46.99 mg) were achieved using MN arrays combined with the poly(ethylene glycol) tablets and directly compressed tablet, respectively. For isoniazid and pyrazinamide, the highest drug permeation was attained using lyophilised reservoir with the amount of drug delivered approximately 58.45 mg and 20.08 mg, respectively. These equate to transdermal delivery of approximately 75% (rifampicin), 79% (isoniazid), 20% (pyrazinamide) and 47% (ethambutol) of the drugs loaded into the reservoirs on average. Importantly, the results of this work have demonstrated the versatility of hydrogel formulations to deliver a TB drug regime using MN arrays. Accordingly, this is a promising approach to deliver high dose of TB drugs.


Assuntos
Antituberculosos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Tuberculose/tratamento farmacológico , Administração Cutânea , Animais , Animais Recém-Nascidos , Antituberculosos/química , Antituberculosos/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos , Liofilização , Humanos , Hidrogéis , Agulhas , Permeabilidade , Absorção Cutânea , Solubilidade , Suínos , Distribuição Tecidual , Adesivo Transdérmico
12.
Bioorg Med Chem ; 28(23): 115797, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075682

RESUMO

In order to identify anti-tubercular agents with a novel scaffold, commercial libraries of small organic compounds were screened against a fluorescent strain of Mycobacterium tuberculosis H37Rv, using a dual phenotypic assay. Compounds were assessed against bacteria replicating in broth medium, as well as inside macrophages, and thienothiazolocarboxamide (TTCA) scaffold was identified as hit in both assays, with submicromolar inhibitory concentrations. Derivatives of TTCA were further synthesized and evaluated for their inhibitory effects on M.tuberculosis H37Rv. In the present study we report the structure-activity relationship of these TTCA derivatives. Compounds 28, 32 and 42 displayed good anti-tubercular activities, as well as favorable ADME and PK properties. Compound 42 exhibited excellent oral bioavailability in mice with high distribution to lungs, within 1 h. It was found to be efficacious in a dose dependent manner in a murine model of M. tuberculosis infection. Hence, compound 42 is now under evaluation as a potential lead candidate for treatment of tuberculosis.


Assuntos
Amidas/química , Antituberculosos/química , Tiazóis/química , Amidas/farmacocinética , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Feminino , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microssomos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/patologia
13.
Pediatr Infect Dis J ; 39(12): 1092-1100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773662

RESUMO

BACKGROUND: Ceftazidime-avibactam is an effective agent for the treatment of tuberculosis (TB) but requires frequent administration because of a short half-life. Due to a longer half-life, ceftriaxone could allow intermittent dosing. METHODS: First, we identified the MIC of ceftriaxone with 15 mg/L avibactam in 30 clinical Mycobacterium tuberculosis isolates. Next, 2 ceftriaxone exposure-effect studies in the intracellular hollow fiber model of TB (HFS-TB) that mimics disseminated disease in young children, were performed. Ceftriaxone was administered once or twice daily for 28 days to explore percentage of time that the concentration persisted above MIC (%TMIC) ranging from 0 to 100%. In a third HFS-TB experiment, the "double cephalosporin" regimen of ceftazidime-ceftriaxone-avibactam was examined and analyzed using Bliss Independence. CONCLUSION: The MIC99 of the clinical strains was 32 mg/L, in the presence of 15 mg/L avibactam. Ceftriaxone %TMIC <42 had no microbial effect in the HFS-TB, %TMIC >54% demonstrated a 4.1 log10 colony-forming units per milliliter M. tuberculosis kill, while %TMIC mediating Emax was 68%. The "double cephalosporin" combination was highly synergistic. Monte Carlo experiments of 10,000 subjects identified the optimal ceftriaxone dose as 100 mg/kg twice a day. CONCLUSION: The combination of ceftriaxone-avibactam at 100 mg/kg could achieve Emax in >90% of children. The ceftriaxone potent activity M. tuberculosis could potentially shorten therapy in children with disseminated TB.


Assuntos
Antituberculosos , Compostos Azabicíclicos , Ceftriaxona , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Meníngea/microbiologia , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Compostos Azabicíclicos/farmacocinética , Compostos Azabicíclicos/farmacologia , Ceftriaxona/farmacocinética , Ceftriaxona/farmacologia , Humanos , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Modelos Biológicos
14.
J Pharmacokinet Pharmacodyn ; 47(5): 421-430, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32488575

RESUMO

Proper characterization of drug effects on Mycobacterium tuberculosis relies on the characterization of phenotypically resistant bacteria to correctly establish exposure-response relationships. The aim of this work was to evaluate the potential difference in phenotypic resistance in in vitro compared to murine in vivo models using CFU data alone or CFU together with most probable number (MPN) data following resuscitation with culture supernatant. Predictions of in vitro and in vivo phenotypic resistance i.e. persisters, using the Multistate Tuberculosis Pharmacometric (MTP) model framework was evaluated based on bacterial cultures grown with and without drug exposure using CFU alone or CFU plus MPN data. Phenotypic resistance and total bacterial number in in vitro natural growth observations, i.e. without drug, was well predicted by the MTP model using only CFU data. Capturing the murine in vivo total bacterial number and persisters during natural growth did however require re-estimation of model parameter using both the CFU and MPN observations implying that the ratio of persisters to total bacterial burden is different in vitro compared to murine in vivo. The evaluation of the in vitro rifampicin drug effect revealed that higher resolution in the persister drug effect was seen using CFU and MPN compared to CFU alone although drug effects on the other bacterial populations were well predicted using only CFU data. The ratio of persistent bacteria to total bacteria was predicted to be different between in vitro and murine in vivo. This difference could have implications for subsequent translational efforts in tuberculosis drug development.


Assuntos
Antituberculosos/farmacocinética , Modelos Biológicos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/administração & dosagem , Rifampina/farmacocinética , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-32122887

RESUMO

Antituberculosis (anti-TB) drug development is dependent on informative trials to secure the development of new antibiotics and combination regimens. Clofazimine (CLO) and pyrazinamide (PZA) are important components of recommended standard multidrug treatments of TB. Paradoxically, in a phase IIa trial aiming to define the early bactericidal activity (EBA) of CLO and PZA monotherapy over the first 14 days of treatment, no significant drug effect was demonstrated for the two drugs using traditional statistical analysis. Using a model-based analysis, we characterized the statistically significant exposure-response relationships for both drugs that could explain the original findings of an increase in the numbers of CFU with CLO treatment and no effect with PZA. Sensitive analyses are crucial for exploring drug effects in early clinical trials to make the right decisions for advancement to further development. We propose that this quantitative semimechanistic approach provides a rational framework for analyzing phase IIa EBA studies and can accelerate anti-TB drug development.


Assuntos
Antituberculosos/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/uso terapêutico , Adulto , Antituberculosos/farmacocinética , Clofazimina/farmacocinética , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Pirazinamida/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-32071052

RESUMO

This study was conducted in treatment-naive adults with drug-susceptible pulmonary tuberculosis in Port-au-Prince, Haiti, to assess the safety, bactericidal activity, and pharmacokinetics of nitazoxanide (NTZ). This was a prospective phase II clinical trial in 30 adults with pulmonary tuberculosis. Twenty participants received 1 g of NTZ orally twice daily for 14 days. A control group of 10 participants received standard therapy over 14 days. The primary outcome was the change in time to culture positivity (TTP) in an automated liquid culture system. The most common adverse events seen in the NTZ group were gastrointestinal complaints and headache. The mean change in TTP in sputum over 14 days in the NTZ group was 3.2 h ± 22.6 h and was not statistically significant (P = 0.56). The mean change in TTP in the standard therapy group was significantly increased, at 134 h ± 45.2 h (P < 0.0001). The mean NTZ MIC for Mycobacterium tuberculosis isolates was 12.3 µg/ml; the mean NTZ maximum concentration (Cmax) in plasma was 10.2 µg/ml. Negligible NTZ levels were measured in sputum. At the doses used, NTZ did not show bactericidal activity against M. tuberculosis Plasma concentrations of NTZ were below the MIC, and its negligible accumulation in pulmonary sites may explain the lack of bactericidal activity. (This study has been registered at ClinicalTrials.gov under identifier NCT02684240.).


Assuntos
Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrocompostos/farmacocinética , Nitrocompostos/uso terapêutico , Tiazóis/farmacocinética , Tiazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Antituberculosos/efeitos adversos , Feminino , Haiti , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nitrocompostos/efeitos adversos , Escarro/microbiologia , Tiazóis/efeitos adversos , Adulto Jovem
18.
J Agric Food Chem ; 68(5): 1257-1265, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927919

RESUMO

Bedaquiline (TMC-207) is a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB). Moreover, there is a present and growing concern for natural-product-mediated drug interaction, as these are inadvertently taken by patients as a dietary supplement, food additive, and medicine. In the present study, we investigated the impact of 20 plant-based natural products, typically phenolics, on in vivo oral bedaquiline pharmacokinetics, as previous studies are lacking. Three natural phenolics were identified that can significantly enhance the oral exposure of bedaquiline upon coadministration. We further investigated the possible role of all of the phytochemicals on in vitro P-glycoprotein (P-gp) induction and inhibition and CYP3A4 inhibition in a single platform as bedaquiline is the substrate for both P-gp and CYP3A4. In conclusion, curcumin, CC-I (3',5-dihydroxyflavone-7-O-ß-d-galacturonide-4'-O-ß-d-glucopyranoside), and 6-gingerol should not be coadministered with bedaquiline to avoid untoward drug interactions and, subsequently, its dose-dependent adverse effects.


Assuntos
Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Suplementos Nutricionais/efeitos adversos , Interações Alimento-Droga , Fenóis/efeitos adversos , Extratos Vegetais/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antituberculosos/administração & dosagem , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diarilquinolinas/administração & dosagem , Suplementos Nutricionais/análise , Feminino , Humanos , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-31209015

RESUMO

In the quest for new antibacterial lead structures, activity screening against Mycobacterium tuberculosis identified antitubercular effects of gallic acid derivatives isolated from the Nigerian mistletoe Loranthus micranthus Structure-activity relationship studies indicated that 3-O-methyl-alkylgallates comprising aliphatic ester chains with four to eight carbon atoms showed the strongest growth inhibition in vitro against M. tuberculosis, with a MIC of 6.25 µM. Furthermore, the most active compounds (3-O-methyl-butyl-, 3-O-methyl-hexylgallate, and 3-O-methyl-octylgallate) were devoid of cytotoxicity against various human cell lines. Furthermore, 3-O-methyl-butylgallate showed favorable absorption, distribution, metabolism, and excretion (ADME) criteria, with a Papp of 6.2 × 10-6 cm/s, and it did not inhibit P-glycoprotein (P-gp), CYP1A2, CYP2B6 or CYP3A4. Whole-genome sequencing of spontaneous resistant mutants indicated that the compounds target the stearoyl-coenzyme A (stearoyl-CoA) delta-9 desaturase DesA3 and thereby inhibit oleic acid synthesis. Supplementation assays demonstrated that oleic acid addition to the culture medium antagonizes the inhibitory properties of gallic acid derivatives and that sodium salts of saturated palmitic and stearic acid did not show compensatory effects. The moderate bactericidal effect of 3-O-methyl-butylgallate in monotreatment was synergistically enhanced in combination treatment with isoniazid, leading to sterilization in liquid culture.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Ácido Gálico/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antituberculosos/farmacocinética , Linhagem Celular , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Ácidos Graxos/metabolismo , Ácido Gálico/farmacologia , Humanos , Loranthaceae/química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Ácido Oleico/biossíntese , Ácido Oleico/farmacologia , Estearoil-CoA Dessaturase/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA