Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.378
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38608142

RESUMO

Protease is the enzyme accountable for the breakdown of proteins i.e., proteolysis. Proteases are reportedly involved in the events of growth, development, progression and metastasis of cancers. If any agent could inhibit/retard the protease enzyme, i.e., protease inhibitor, it would arrest the cancer; thus indicating the significance of exploring protease inhibitors for latest anti-malignant drug discovery. Higher plants are the rich sources of different protease inhibitors that are effective against several types of malignancies both at preclinical and clinical stages. Natural protease inhibitors of herbal origin have both cancer chemopreventive and chemotherapeutic properties together with inhibitory activity against different types of pertinent proteases. Clinically, these herbal agents are found to be safe unlike the synthetic antineoplastic agents. Further studies in this direction are necessary in pursuit of newer generation drugs without adverse reactions for the prevention and treatment of malignancies.


Assuntos
Neoplasias , Inibidores de Proteases , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Peptídeo Hidrolases , Antivirais
2.
PLoS One ; 19(4): e0298201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626042

RESUMO

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Assuntos
Alcaloides , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/química
3.
Virol J ; 21(1): 95, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664855

RESUMO

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Assuntos
Vírus da Febre Suína Africana , Anti-Inflamatórios , Antivirais , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Antivirais/farmacologia , Suínos , Anti-Inflamatórios/farmacologia , Chlorocebus aethiops , Células Vero , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Macrófagos/imunologia , Febre Suína Africana/virologia , Replicação Viral/efeitos dos fármacos , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Efeito Citopatogênico Viral/efeitos dos fármacos , Citocinas/metabolismo , Internalização do Vírus/efeitos dos fármacos
4.
World J Gastroenterol ; 30(13): 1911-1925, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659485

RESUMO

BACKGROUND: Liuweiwuling Tablet (LWWL) is a Chinese patent medicine approved for the treatment of chronic inflammation caused by hepatitis B virus (HBV) infection. Previous studies have indicated an anti-HBV effect of LWWL, specifically in terms of antigen inhibition, but the underlying mechanism remains unclear. AIM: To investigate the potential mechanism of action of LWWL against HBV. METHODS: In vitro experiments utilized three HBV-replicating and three non-HBV-replicating cell lines. The in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were used to investigate the underlying mechanisms of action of LWWL. RESULTS: In HepG2.1403F cells, LWWL (0.8 mg/mL) exhibited inhibitory effects on HBV DNA, hepatitis B surface antigen and pregenomic RNA (pgRNA) at rates of 51.36%, 24.74% and 50.74%, respectively. The inhibition rates of LWWL (0.8 mg/mL) on pgRNA/covalently closed circular DNA in HepG2.1403F, HepG2.2.15 and HepG2.A64 cells were 47.78%, 39.51% and 46.74%, respectively. Integration of transcriptomics and metabolomics showed that the anti-HBV effect of LWWL was primarily linked to pathways related to apoptosis (PI3K-AKT, CASP8-CASP3 and P53 pathways). Apoptosis flow analysis revealed that the apoptosis rate in the LWWL-treated group was significantly higher than in the control group (CG) among HBV-replicating cell lines, including HepG2.2.15 (2.92% ± 1.01% vs 6.68% ± 2.04%, P < 0.05), HepG2.A64 (4.89% ± 1.28% vs 8.52% ± 0.50%, P < 0.05) and HepG2.1403F (3.76% ± 1.40% vs 7.57% ± 1.35%, P < 0.05) (CG vs LWWL-treated group). However, there were no significant differences in apoptosis rates between the non-HBV-replicating HepG2 cells (5.04% ± 0.74% vs 5.51% ± 1.57%, P > 0.05), L02 cells (5.49% ± 0.80% vs 5.48% ± 1.01%, P > 0.05) and LX2 cells (6.29% ± 1.54% vs 6.29% ± 0.88%, P > 0.05). TUNEL staining revealed a significantly higher apoptosis rate in the LWWL-treated group than in the CG in the HBV-replicating mouse model, while no noticeable difference in apoptosis rates between the two groups was observed in the non-HBV-replicating mouse model. CONCLUSION: Preliminary results suggest that LWWL exerts a potent inhibitory effect on wild-type and drug-resistant HBV, potentially involving selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.


Assuntos
Antivirais , Apoptose , DNA Viral , Medicamentos de Ervas Chinesas , Vírus da Hepatite B , Comprimidos , Replicação Viral , Apoptose/efeitos dos fármacos , Animais , Humanos , Vírus da Hepatite B/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Células Hep G2 , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antígenos de Superfície da Hepatite B/metabolismo , Masculino , Hepatite B/tratamento farmacológico , Hepatite B/virologia , RNA Viral/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia
5.
PLoS One ; 19(4): e0301086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662719

RESUMO

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Assuntos
Antivirais , Iridoides , Simulação de Acoplamento Molecular , Olea , Extratos Vegetais , Folhas de Planta , Polifenóis , SARS-CoV-2 , Olea/química , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia , Iridoides/química , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/química , Glucosídeos/farmacologia , Glucosídeos/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Simulação por Computador , Tratamento Farmacológico da COVID-19 , Luteolina/farmacologia , Luteolina/química , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , Apigenina/farmacologia , Apigenina/química
6.
Medicine (Baltimore) ; 103(14): e37752, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579047

RESUMO

The value of detecting hepatitis B virus (HBV), pregenomic RNA (pgRNA), and hepatitis B core-related antigen (HBcrAg), both separately and jointly, in the management of HBV patients undergoing treatment with Nucleotide Analog was investigated. A total of 149 HBV patients who were being treated with Nucleotide Analog were enrolled in this study. The quantitative levels of HBV pgRNA and HBcrAg in the sera of these patients were determined, aiming to comprehend their replication levels and expression during the course of antiviral therapy. The patients were separated into 3 groups based on treatment duration: treatment time ≤ 12 months, treatment time ranging from 12 months to <60 months, and treatment time ≥ 60 months. Significantly different levels of HBcrAg and HBV pgRNA were observed among 3 groups (P < .05). In the group of patients with positive hepatitis B e antigen, both HBcrAg and pgRNA levels were higher compared to the group with negative hepatitis B e antigen, and this difference between the 2 groups was found to be statistically significant. Stratified analysis based on levels of hepatitis B surface antigen (HBsAg) revealed that the group with HBsAg levels < 100 IU/mL had lower levels of both HBcrAg and pgRNA compared to the group with HBsAg levels ≥ 100 IU/mL (P < .001). Following antiviral therapy, various degrees of transcription of covalently closed circular DNA continue to exist within the liver of HBV patients. The levels of serum HBcrAg and HBV pgRNA vary among patients with different treatment durations, indicating their efficacy in evaluating disease conditions during antiviral therapy.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Extratos Vegetais , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Antígenos E da Hepatite B , RNA , Antígenos do Núcleo do Vírus da Hepatite B , Antivirais/uso terapêutico , Nucleotídeos/uso terapêutico , DNA Viral , Biomarcadores
7.
Antiviral Res ; 226: 105889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631661

RESUMO

Hepatitis B virus (HBV) infections pose a major threat to human health. HBV can upregulate the expression of the transcription factor Yin Yang 1 (YY1) in in vitro cytological experiments, suggesting an association between YY1 and HBV infection. However, data on YY1 expression in chronic hepatitis B (CHB) patients are lacking. In this study, we aimed to assess the correlation between YY1 expression and HBV infection. We detected serum YY1 levels in 420 patients with chronic HBV infection, 30 patients with chronic hepatitis C virus infection, and 32 healthy controls using an enzyme-linked immunosorbent assay. The correlation between YY1 levels and clinical parameters was analyzed. Meanwhile, the changes of YY1 before and after interferon or entecavir treatment were analyzed. YY1 levels in the liver tissues were detected using immunofluorescence staining. The expression of YY1 in HBV-expressing cells was detected through western blotting. Meanwhile, we explored the effects of YY1 on HBV replication and gene expression. We found that YY1 was highly expressed in the serum and liver tissues of CHB patients. Serum YY1 levels positively correlated with HBV DNA and hepatitis B surface antigen (HBsAg). Additionally, HBV DNA levels increased but HBsAg levels decreased after HBV-expressing cells overexpress YY1. In conclusion, our study demonstrates that YY1 plays an important role in HBV replication and gene expression, providing a potential target for the treatment of CHB.


Assuntos
DNA Viral , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica , Fígado , Replicação Viral , Fator de Transcrição YY1 , Humanos , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Hepatite B Crônica/virologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , DNA Viral/genética , DNA Viral/sangue , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/metabolismo , Fígado/virologia , Fígado/metabolismo , Guanina/análogos & derivados , Antivirais/uso terapêutico , Antivirais/farmacologia , Interferons/metabolismo , Células Hep G2
8.
JAMA ; 331(16): 1369-1378, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568601

RESUMO

Importance: Facilitated telemedicine may promote hepatitis C virus elimination by mitigating geographic and temporal barriers. Objective: To compare sustained virologic responses for hepatitis C virus among persons with opioid use disorder treated through facilitated telemedicine integrated into opioid treatment programs compared with off-site hepatitis specialist referral. Design, Setting, and Participants: Prospective, cluster randomized clinical trial using a stepped wedge design. Twelve programs throughout New York State included hepatitis C-infected participants (n = 602) enrolled between March 1, 2017, and February 29, 2020. Data were analyzed from December 1, 2022, through September 1, 2023. Intervention: Hepatitis C treatment with direct-acting antivirals through comanagement with a hepatitis specialist either through facilitated telemedicine integrated into opioid treatment programs (n = 290) or standard-of-care off-site referral (n = 312). Main Outcomes and Measures: The primary outcome was hepatitis C virus cure. Twelve programs began with off-site referral, and every 9 months, 4 randomly selected sites transitioned to facilitated telemedicine during 3 steps without participant crossover. Participants completed 2-year follow-up for reinfection assessment. Inclusion criteria required 6-month enrollment in opioid treatment and insurance coverage of hepatitis C medications. Generalized linear mixed-effects models were used to test for the intervention effect, adjusted for time, clustering, and effect modification in individual-based intention-to-treat analysis. Results: Among 602 participants, 369 were male (61.3%); 296 (49.2%) were American Indian or Alaska Native, Asian, Black or African American, multiracial, or other (ie, no race category was selected, with race data collected according to the 5 standard National Institutes of Health categories); and 306 (50.8%) were White. The mean (SD) age of the enrolled participants in the telemedicine group was 47.1 (13.1) years; that of the referral group was 48.9 (12.8) years. In telemedicine, 268 of 290 participants (92.4%) initiated treatment compared with 126 of 312 participants (40.4%) in referral. Intention-to-treat cure percentages were 90.3% (262 of 290) in telemedicine and 39.4% (123 of 312) in referral, with an estimated logarithmic odds ratio of the study group effect of 2.9 (95% CI, 2.0-3.5; P < .001) with no effect modification. Observed cure percentages were 246 of 290 participants (84.8%) in telemedicine vs 106 of 312 participants (34.0%) in referral. Subgroup effects were not significant, including fibrosis stage, urban or rural participant residence location, or mental health (anxiety or depression) comorbid conditions. Illicit drug use decreased significantly (referral: 95% CI, 1.2-4.8; P = .001; telemedicine: 95% CI, 0.3-1.0; P < .001) among cured participants. Minimal reinfections (n = 13) occurred, with hepatitis C virus reinfection incidence of 2.5 per 100 person-years. Participants in both groups rated health care delivery satisfaction as high or very high. Conclusions and Relevance: Opioid treatment program-integrated facilitated telemedicine resulted in significantly higher hepatitis C virus cure rates compared with off-site referral, with high participant satisfaction. Illicit drug use declined significantly among cured participants with minimal reinfections. Trial Registration: ClinicalTrials.gov Identifier: NCT02933970.


Assuntos
Antivirais , Transtornos Relacionados ao Uso de Opioides , Encaminhamento e Consulta , Telemedicina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antivirais/uso terapêutico , Prestação Integrada de Cuidados de Saúde , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , New York , Tratamento de Substituição de Opiáceos/métodos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Estudos Prospectivos , Resposta Viral Sustentada
9.
Medicine (Baltimore) ; 103(12): e37498, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518027

RESUMO

To reveal the key factors influencing the progression of severe COVID-19 to critical illness and death in the intensive care unit (ICU) and to accurately predict the risk, as well as to validate the efficacy of treatment using traditional Chinese medicine (TCM), thus providing valuable recommendations for the clinical management of patients. A total of 189 patients with COVID-19 in 25 ICUs in Chongqing, China, were enrolled, and 16 eventually died. Statistical models shown that factors influencing the progression of COVID-19 to critical illness include the severity of illness at diagnosis, the mode of respiratory support, and the use of TCM. Risk factors for death include a history of metabolic disease, the use of antiviral drugs and TCM, and invasive endotracheal intubation. The area under curve of the noncollinearity model predicted the risk of progression to critical illness and the risk of death reached 0.847 and 0.876, respectively. The use of TCM is an independent protective factor for the prevention of the progression of severe COVID-19, while uncorrectable hypoxemia and invasive respiratory support are independent risk factors, and antiviral drugs can help reduce mortality. The multifactorial prediction model can assess the risk of critical illness and death in ICU COVID-19 patients, and inform clinicians in choosing the treatment options and medications.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , Medicina Tradicional Chinesa , Estado Terminal/terapia , Unidades de Terapia Intensiva , Antivirais
10.
Antiviral Res ; 225: 105856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447646

RESUMO

Four years after its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global challenge for human health. At its surface, SARS-CoV-2 features numerous extensively glycosylated spike proteins. This glycan coat supports virion docking and entry into host cells and at the same time renders the virus less susceptible to neutralizing antibodies. Given the high genetic plasticity of SARS-CoV-2 and the rapid emergence of immune escape variants, targeting the glycan shield by carbohydrate-binding agents emerges as a promising strategy. However, the potential of carbohydrate-targeting reagents as viral inhibitors remains underexplored. Here, we tested seven plant-derived carbohydrate-binding proteins, called lectins, and one crude plant extract for their antiviral activity against SARS-CoV-2 in two types of human lung cells: A549 cells ectopically expressing the ACE2 receptor and Calu-3 cells. We identified three lectins and an Allium porrum (leek) extract inhibiting SARS-CoV-2 infection in both cell systems with selectivity indices (SI) ranging between >2 and >299. Amongst these, the lectin Concanavalin A (Con A) exerted the most potent and broad activity against a panel of SARS-CoV-2 variants. We used multiplex super-resolution microscopy to address lectin interactions with SARS-CoV-2 and its host cells. Notably, we discovered that Con A not only binds to SARS-CoV-2 virions and their host cells, but also causes SARS-CoV-2 aggregation. Thus, Con A exerts a dual mode-of-action comprising both, antiviral and virucidal, mechanisms. These results establish Con A and other plant lectins as candidates for COVID-19 prevention and basis for further drug development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cebolas/metabolismo , Concanavalina A/metabolismo , Lectinas/metabolismo , Polissacarídeos , Antivirais/farmacologia , Extratos Vegetais , Glicoproteína da Espícula de Coronavírus
11.
J Ethnopharmacol ; 328: 118072, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38508431

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Formula (BSF) is the effective traditional Chinese medicine (TCM) for chronic hepatitis B (CHB) according to our previous researches. However, the special effectiveness of BSF treating CHB patients in different stages and the immunoregulatory mechanisms remain to be explored. AIM OF THE STUDY: To compare the therapeutic effects of BSF in both treatment-naive patients and Peg-IFN-α-treated patients, and explore the potential mechanism of immunomodulation. MATERIALS AND METHODS: Ultra-high performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry and the TCMSP database were used to determine the main components of BSF. Two hundred and sixty-six patients were enrolled in the retrospective study, and they were divided into the treatment group (T-Group, BSF plus Peg-IFN-α) and the control group (C-Group, Peg-IFN-α monotherapy). Within each group, patients were further grouped into subgroups, namely T1/C1 groups (treatment-naive patients, T1 = 34, C1 = 94) and T2/C2 groups (Peg-IFN-α-treated patients, T2 = 56, C2 = 82). Serum HBV markers, serum HBV DNA levels, serum ALT/AST and TCM symptoms were obtained from the record. Bioinformatics analysis was employed to obtain the potential immunoregulatory mechanisms of BSF treating CHB patients. Among patients in T2 and C2 group, peripheral mononuclear cells from 36 patients were used to analyze the characteristics of peripheral follicular helper T (Tfh) cells and B-cell subtypes by flow cytometry. Preparation of BSF-containing serum in rats. In vitro, the co-culture system of CXCR5+ cells and HepG2.2.15 cells was built to investigate the immunoregulatory effects of BSF. RESULTS: A total of 14 main active compounds were detected in BSF, which were deemed critical for the treatment of CHB. Our findings indicated that the T2-Group exhibited the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the C2-Group (35.7% vs. 15.9%, P = 0.033; 33.9% vs. 11.0%, P = 0.002). Additionally, the T2-Group demonstrated the higher percentage of HBsAg decline ≥ 1-log10 IU/ml and rate of HBeAg seroclearance compared to the T1-Group (35.7% vs. 14.7%, P = 0.031; 33.9% vs. 2.9%, P = 0.000). The total effective rate based on TCM clinical syndrome in T1-Group and T2-Group were significantly greater than those in C1-Group and C2-Group (85.3% vs. 61.7%, P = 0.012; 89.1% vs. 63.4%, P = 0.000). Bioinformatics analysis indicated that the immunoregulatory mechanisms of BSF treating CHB patients were mainly linked to the growth and stimulation of B-cell, T-cell differentiation, and the signaling pathway of the B-cell receptor. Furthermore, the frequencies of Tfh cells and its IL-21 level, and the IL-21R expressed by B-cell were all increased after BSF treatment. Additionally, in the co-culture system of CXCR5+ cells and HepG2.2.15 cells, HBsAg and HBeAg levels were decreased after BSF-containing serum treatment,as well as the up-regulating of Tfh cell frequencies and down-regulating of B-cell frequencies. CONCLUSIONS: BSF have the higher percentage of HBsAg decline and HBeAg seroclearance in Peg-IFN-α-treated patients compared with treatment-naive patients. The potential immunoregulatory mechanism may correlate with promoting the interaction between Tfh cells and B-cell through IL-21/IL-21R signaling pathway.


Assuntos
Subpopulações de Linfócitos B , Medicamentos de Ervas Chinesas , Hepatite B Crônica , Humanos , Ratos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Células T Auxiliares Foliculares , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/diagnóstico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antígenos E da Hepatite B , Estudos Retrospectivos , Biomarcadores , DNA Viral , Resultado do Tratamento , Polietilenoglicóis/uso terapêutico
12.
J Ethnopharmacol ; 328: 118070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Senegal, upper and lower respiratory tract infections constitute a real health problem. To manage these disorders, most people rely on the use of local medicinal plants. This is particularly the case for species belonging to the botanical families, Combretaceae, Fabaceae, Myrtaceae and Rubiaceae, which are widely used to treat various respiratory problems such as colds, flu, rhinitis, sinusitis, otitis, angina, bronchitis, bronchiolitis and also pneumonia. AIM OF THE STUDY: The aim of this study was to identify medicinal plants traditionally used for the management of infectious diseases, in particular those of the respiratory tract. On the basis of these ethnopharmacological uses, this study made it possible to highlight the antibacterial, antiviral and cytotoxic activities of selected plant species. MATERIALS AND METHODS: An ethnobotanical survey was conducted in Senegal among informants, including herbalists, traditional healers, and households, using medicinal plants in the management of infectious diseases, with a focus on respiratory tract infections. The most cited plant species were evaluated in vitro on a panel of 18 human pathogenic bacteria may be involved in respiratory infections and against the human coronavirus HCoV-229E in Huh-7 cells. The antiviral activity of the most active extracts against HCoV-229E was also evaluated on COVID-19 causing agent, SARS-CoV-2 in Vero-81 cells. In parallel, cytotoxic activities were evaluated on Huh-7 cells. RESULTS: A total of 127 informants, including 100 men (78.74%) and 27 women (21.26%) participated in this study. The ethnobotanical survey led to the inventory of 41 plant species belonging to 19 botanical families used by herbalists and/or traditional healers and some households to treat infectious diseases, with a specific focus on upper respiratory tract disorders. Among the 41 plant species, the most frequently mentioned in the survey were Guiera senegalensis J.F. Gmel. (95.2%), Combretum glutinosum Perr. Ex DC. (93.9%) and Eucalyptus spp. (82.8%). Combretaceae (30.2%) represented the most cited botanical family with six species, followed by Fabaceae (29.3%, 12 species). A total of 33 crude methanolic extracts of the 24 plant species selected for their number of citations were evaluated in vitro for their antimicrobial and cytotoxic activities. Guiera senegalensis, Combretum glutinosum, Vachellia nilotica subsp. tomentosa (Benth.) Kyal. & Boatwr, Eucalyptus camaldulensis Dehnh., and Terminalia avicennioides Guill. & Perr., showed antibacterial activities. The most active plants against HCoV-229E were: Ficus sycomorus L., Mitragyna inermis (Willd.) Kuntze, Pterocarpus erinaceus Poir., and Spermacoce verticillata L. One of these plants, Mitragyna inermis, was also active against SARS-CoV-2. CONCLUSION: This work confirmed the anti-infective properties of plant species traditionally used in Senegal. Overall, the most frequently cited plant species showed the best antibacterial activities. Moreover, some of the selected plant species could be considered as a potential source for the management of coronavirus infections. This new scientific data justified the use of these plants in the management of some infectious pathologies, especially those of the respiratory tract.


Assuntos
Anti-Infecciosos , COVID-19 , Combretaceae , Combretum , Doenças Transmissíveis , Coronavirus Humano 229E , Plantas Medicinais , Masculino , Humanos , Feminino , Fitoterapia , Medicinas Tradicionais Africanas , Etnobotânica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico
13.
Viruses ; 16(3)2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
14.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543735

RESUMO

Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.


Assuntos
Unha-de-Gato , Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico
15.
J Hosp Infect ; 147: 83-86, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490488

RESUMO

BACKGROUND: Respiratory viruses have been reported to infect the salivary glands and the throat, which are potential reservoirs for virus replication and transmission. Therefore, strategies to reduce the amount of infective virus particles in the oral mucous membranes could lower the risk of transmission. METHODS: The viral inactivation capacity of a plant-oil-based oral rinse (Salviathymol®) was evaluated in comparison with chlorhexidine (Chlorhexamed® FORTE) using a quantitative suspension test according to EN 14476. FINDINGS: Salviathymol efficiently inactivated severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), respiratory syncytial virus (RSV) and two influenza strains to undetectable levels. CONCLUSION: Salviathymol has potential as preventive measure to lower transmission of respiratory viruses.


Assuntos
Antissépticos Bucais , SARS-CoV-2 , Humanos , Antissépticos Bucais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Óleos de Plantas/farmacologia , Antivirais/farmacologia , Inativação de Vírus/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , COVID-19/prevenção & controle
16.
J Viral Hepat ; 31(6): 342-356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433561

RESUMO

All-oral, direct-acting antivirals can cure hepatitis C virus (HCV) in almost all infected individuals; yet, many individuals with chronic HCV are not treated, and the incidence of acute HCV is increasing in some countries, including the United States. Strains on healthcare resources during the COVID-19 pandemic negatively impacted the progress toward the World Health Organization goal to eliminate HCV by 2030, especially among persons who inject drugs (PWID). Here, we present a holistic conceptual framework termed LOTUS (Leveraging Opportunities for Treatment/User Simplicity), designed to integrate the current HCV practice landscape and invigorate HCV treatment programs in the setting of endemic COVID-19: (A) treatment as prevention (especially among PWID), (B) recognition that HCV cure may be achieved with variable adherence with evidence supporting some forgiveness for missed doses, (C) treatment of all persons with active HCV infection (viremic), regardless of acuity, (D) minimal monitoring (MinMon) during treatment, and (E) rapid test and treat (TnT). The objective of this article is to review the current literature supporting each LOTUS petal; identify remaining gaps in knowledge or data; define the remaining barriers facing healthcare providers; and review evidence-based strategies for overcoming key barriers.


Assuntos
Antivirais , COVID-19 , Abuso de Substâncias por Via Intravenosa , Humanos , Antivirais/uso terapêutico , Abuso de Substâncias por Via Intravenosa/complicações , COVID-19/prevenção & controle , COVID-19/epidemiologia , Hepatite C/tratamento farmacológico , Hepatite C/prevenção & controle , SARS-CoV-2 , Erradicação de Doenças/métodos , Hepatite C Crônica/tratamento farmacológico , Hepacivirus/efeitos dos fármacos
17.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457082

RESUMO

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Assuntos
Antivirais , Glicosídeos , Ipomoea , Resinas Vegetais , Sementes , Ipomoea/química , Sementes/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Resinas Vegetais/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Células HL-60 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
18.
J Nat Med ; 78(3): 784-791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512650

RESUMO

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19. We purified the PLpro enzyme and conducted in vitro enzymatic assays using specific substrates. Among the nine crude drugs present in senkyuchachosan, four (Cyperi Rhizoma, Schizonepetae Spica, Menthae Herba, and Camelliae sinensis Folium [CsF]) strongly inhibited PLpro activity. CsF, derived from Camellia sinensis (green tea), contains polyphenols, including catechins and tannins. To confirm that the PLpro inhibitory effects of senkyuchachosan predominantly stem from tannins, the tannins were removed from the decoction using polyvinylpolypyrrolidone (PVPP). The inhibitory effect of senkyuchachosan on PLpro activity was reduced by the removal of PVPP. In addition, the tannin fraction obtained from the CsF extracts showed significant PLpro inhibitory effects. These findings lay the groundwork for the potential development of therapeutic agents that target SARS-CoV-2 infection by intervening in proteolytic cleavage of the virus.


Assuntos
SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Antivirais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Taninos/farmacologia , Medicina Kampo
19.
Virus Res ; 344: 199359, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38521505

RESUMO

The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.


Assuntos
Vírus da Febre Suína Africana , Antivirais , DNA Polimerase Dirigida por DNA , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/química , Animais , Antivirais/farmacologia , Antivirais/química , Febre Suína Africana/virologia , Suínos , Descoberta de Drogas , Replicação Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica , Simulação de Acoplamento Molecular , DNA Viral/genética , Farmacóforo
20.
Drug Des Devel Ther ; 18: 651-665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450095

RESUMO

Purpose: This study aims to investigate the in vitro antiviral effects of the aqueous solution of Changyanning (CYN) tablets on Enterovirus 71 (EV71), and to analyze its active components. Methods: The in vitro anti-EV71 effects of CYN solution and its herbal ingredients were assessed by testing the relative viral RNA (vRNA) expression level and the cell viability rates. Material basis analysis was performed using HPLC-Q-TOF-MS/MS detection. Potential targets and active components were identified by network pharmacology and molecular docking. The screened components were verified by in vitro antiviral experiments. Results: CYN solution exerted anti-EV71 activities as the vRNA is markedly reduced after treatment, with a half maximal inhibitory concentration (IC50) of 996.85 µg/mL. Of its five herbal ingredients, aqueous extract of Mosla chinensis (AEMC) and leaves of Liquidambar formosana Hance (AELLF) significantly inhibited the intracellular replication of EV71, and the IC50 was tested as 202.57 µg/mL and 174.77 µg/mL, respectively. Based on HPLC-Q-TOF-MS/MS results, as well as the comparison with the material basis of CYN solution, a total of 44 components were identified from AEMC and AELLF. Through network pharmacology, AKT1, ALB, and SRC were identified as core targets. Molecular docking performed between core targets and the components indicated that 21 components may have anti-EV71 effects. Of these, nine were selected for in vitro pharmacodynamic verification, and only rosmarinic acid manifested in vitro anti-EV71 activity, with an IC50 of 11.90 µg/mL. Moreover, rosmarinic acid can stably bind with three core targets by forming hydrogen bonds. Conclusion: CYN solution has inhibitory effects on EV71 replication in vitro, and its active component was identified as rosmarinic acid. Our study provides a new approach for screening and confirmation of the effective components in Chinese herbal preparation.


Assuntos
Enterovirus Humano A , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Ácido Rosmarínico , Comprimidos , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA