Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102243, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810787

RESUMO

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Plastídeos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
2.
EMBO J ; 40(16): e107247, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34031901

RESUMO

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Apicoplastos , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
3.
J Biol Chem ; 295(22): 7743-7752, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341123

RESUMO

Toxoplasma gondii is a common protozoan parasite that infects a wide range of hosts, including livestock and humans. Previous studies have suggested that the type 2 fatty acid synthesis (FAS2) pathway, located in the apicoplast (a nonphotosynthetic plastid relict), is crucial for the parasite's survival. Here we examined the physiological relevance of fatty acid synthesis in T. gondii by focusing on the pyruvate dehydrogenase complex and malonyl-CoA-[acyl carrier protein] transacylase (FabD), which are located in the apicoplast to drive de novo fatty acid biosynthesis. Our results disclosed unexpected metabolic resilience of T. gondii tachyzoites, revealing that they can tolerate CRISPR/Cas9-assisted genetic deletions of three pyruvate dehydrogenase subunits or FabD. All mutants were fully viable in prolonged cultures, albeit with impaired growth and concurrent loss of the apicoplast. Even more surprisingly, these mutants displayed normal virulence in mice, suggesting an expendable role of the FAS2 pathway in vivo Metabolic labeling of the Δpdh-e1α mutant showed reduced incorporation of glucose-derived carbon into fatty acids with medium chain lengths (C14:0 and C16:0), revealing that FAS2 activity was indeed compromised. Moreover, supplementation of exogenous C14:0 or C16:0 significantly reversed the growth defect in the Δpdh-e1α mutant, indicating salvage of these fatty acids. Together, these results demonstrate that the FAS2 pathway is dispensable during the lytic cycle of Toxoplasma because of its remarkable flexibility in acquiring fatty acids. Our findings question the long-held assumption that targeting this pathway has significant therapeutic potential for managing Toxoplasma infections.


Assuntos
Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Toxoplasma/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Apicoplastos/genética , Ácidos Graxos/genética , Deleção de Genes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-29311075

RESUMO

Many organisms undergo dormancy as a stress response to survive under unfavorable conditions that might impede development. This is observed in seeds and buds of plants and has been proposed as a mechanism of drug evasion and resistance formation in Plasmodium falciparum We explored the effects of the phytohormones abscisic acid (ABA) and gibberellic acid (GA) on dihydroartemisinin (DHA)-induced dormant erythrocytic stages of P. falciparum parasites. Dormant ring stages exposed to ABA and GA recovered from dormancy up to 48 h earlier than parasites exposed to DHA alone. Conversely, fluridone, an herbicide inhibitor of ABA synthesis, blocked emergence from dormancy. Additionally, the role of the apicoplast was assessed in dormant parasite recovery. Apicoplast-deficient P. falciparum remained viable for up to 8 days without the organelle and recrudesced only when supplemented with isopentyl pyrophosphate (IPP). IPP was not required for survival in the dormant state. Fosmidomycin inhibition of isoprenoid biosynthesis did not prevent dormancy release from occurring in parasites with an intact apicoplast, but IPP or geranylgeranyl pyrophosphate was needed for complete recrudescence. In addition, the apicoplast and specifically the isoprenoids it produces are essential for recovery of dormant parasites. In summary, ABA and GA have significant effects on dormant parasites, and the phenotypes produced by these phytohormones and the herbicide fluridone also provide a means to explore the mechanism(s) underlying dormancy and the regulatory network that promotes cell cycle arrest in P. falciparum.


Assuntos
Apicoplastos/metabolismo , Artemisininas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Terpenos/farmacologia , Ácido Abscísico/farmacologia , Giberelinas/farmacologia
5.
Drug Discov Today ; 23(1): 134-140, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987288

RESUMO

The alignment of the evolutionary history of parasites with that of plants provides a different panorama in the drug development process. The housing of different metabolic processes, essential for parasite survival, adds to the indispensability of the apicoplast. The different pathways responsible for fueling the apicoplast and parasite offer a myriad of proteins responsible for the apicoplast function. The studies emphasizing the target-based approaches might help in the discovery of antimalarials. The different putative drug targets and their roles are highlighted. In addition, the origin of the apicoplast and metabolic processes are reviewed and the different drugs acting upon the enzymes of the apicoplast are discussed.


Assuntos
Antimaláricos/uso terapêutico , Apicoplastos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Ácidos Graxos/metabolismo , Fluxo Gênico , Heme/metabolismo , Plasmodium falciparum/genética , Terpenos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29109165

RESUMO

Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.


Assuntos
Antimaláricos/farmacologia , Apicoplastos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Apicoplastos/genética , Azitromicina/farmacologia , Células Cultivadas , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/biossíntese , Heme/antagonistas & inibidores , Heme/biossíntese , Hemiterpenos/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Malária Falciparum/parasitologia , Compostos Organofosforados/farmacologia , Proteínas de Protozoários/metabolismo
7.
Life Sci ; 136: 126-32, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26164186

RESUMO

AIM: Many important drugs like mefloquine are not being used because of the development of resistance and other related issues. In the present study, we aimed to control drug resistance by using combination therapy and tried to understand the mechanism involved. MATERIAL AND METHODS: We have explored in vitro interaction of clarithromycin (CLTR), and mefloquine (MQ) against Pf3D7 and PfK1 strains. Bioavailability of MQ in parasitized RBC lysate was checked in the presence/absence of CLTR using HPLC method. Further tufA mRNA/protein expression was investigated to know the effect of both drugs on apicoplast by using qPCR and Western blotting. KEY FINDINGS: MQ and CLTR inhibited growth of Pf3D7 and PfK1. CLTR showed its delayed antimalarial effect by its low IC50 values in the second cycle which indicates its effect on apicoplast. Downregulation of tufA expression on both mRNA and protein level supports this hypothesis. MQ and CLTR showed synergism/additiveness (mean ∑FICs = 0.89 and 1.26) against Pf3D7 and PfK1 respectively. It is evidenced from HPLC data that CLTR might have reduced metabolism of MQ in Plasmodium falciparum, leading to increased levels of MQ to produce enhanced antimalarial activity. The metabolism of CLTR is also reduced may be due to competitive metabolism of MQ via CYP3A4. SIGNIFICANCE: The present study reveals that broad spectrum biological activities (i.e. antimalarial and antiviral) of MQ can be saved by using suitable partner drug like CLTR. This study also shows that CLTR increases the concentration of MQ and disrupts the apicoplast.


Assuntos
Antimaláricos/farmacologia , Apicoplastos/efeitos dos fármacos , Claritromicina/farmacologia , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50
8.
PLoS Pathog ; 9(9): e1003655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086138

RESUMO

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Assuntos
Apicoplastos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Apicoplastos/genética , Liases de Carbono-Enxofre/genética , Humanos , Proteínas Ferro-Enxofre/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA