Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Biochem ; 46(8): e14195, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460089

RESUMO

Exercise training and medicinal herb supplementation may improve microRNAs (miRNAs) expression associated with obesity. This study aimed to assess the effects of 10 weeks of aerobic training (AT) and dill extract (DE) on miR-33 and miR-223 expression of liver in high-fat diet (HFD)-induced obese rats. Forty male Wistar rats were fed a defined high-fat (n = 32) and standard (n = 8, nonobese control [NC]) diet. After obesity induction, obese rats were randomly allocated to four groups: AT, DE, AT + DE, and obese control (OC). Rats were euthanized and plasma and liver tissue samples were collected after the intervention. The liver expression of miR-33 was lower in the AT, DE, AT + DE, and NC groups compared with the OC group. Also, the liver miR-223 expression was higher in the AT, DE, AT + DE, and NC groups compared with the OC group. Moreover, the liver expression of miR-223 in the AT + DE group was higher compared with the AT and DE groups. The AT, DE, AT + DE, and NC groups had lower liver TC compared with the OC group. Also, the plasma level of apolipoprotein B (Apo B) was significantly lower, and liver HDL-C was significantly higher in the AT + DE and NC groups compared with the OC group. These findings show that long-term AT combined with the intake of DE may improve the plasma levels of Apo B, and TC and HDL-C levels in the liver, which is probably due to AT and DE positive effects on miR-33 and miR-223 in the liver of obese rats. PRACTICAL APPLICATIONS: Aerobic training reduces overweight and obesity health problems, however, the duration and intensity of the exercise training distinguish between individuals. We used an integrated approach combining pharmacological and non-pharmacological as a medical strategy to prevent HFD-induced metabolic injury in obese rats. The present results discovered that a combination of AT + DE intervention improves the miR-33 and miR-223 in the liver of obese rats.


Assuntos
Anethum graveolens , MicroRNAs , Animais , Apolipoproteínas B/metabolismo , Apolipoproteínas B/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fígado , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Fatores de Risco
3.
J Lipid Res ; 31(5): 927-32, 1990 May.
Artigo em Inglês | MEDLINE | ID: mdl-2380639

RESUMO

In order to study the effects of very low density (VLDL) and low density (LDL) lipoproteins on the activity and specificity of lecithin:cholesterol acyltransferase (LCAT), we determined the molecular species of cholesteryl esters (CE) synthesized in the plasma from three abetalipoproteinemic (ABL) patients, before and after supplementation with normal VLDL or LDL. The patients' plasma had significantly lower concentration of 18:2 CE and higher concentrations of 16:0 CE and 18:1 CE compared to normal plasma. Incubation of ABL plasma with [4-14C]cholesterol at 37 degrees C and the subsequent analysis of labeled CE formed by high performance liquid chromatography revealed that the major species formed was 16:0 CE (34% of total label), whereas similar incubation of the d greater than 1.063 g/ml fraction of normal plasma resulted in the formation of predominantly 18:2 CE (45% of total label). Addition of normal VLDL or LDL to ABL plasma stimulated the total LCAT activity by 30-80% and normalized the CE species synthesized. The LCAT activity of a normal d greater than 1.063 g/ml fraction also was stimulated by the normal VLDL or LDL, but there was no alteration in the species of CE formed. Most of the CE synthesized was found in the added VLDL or LDL with both ABL and normal plasma, indicating that the CE transfer (CET) activity was not affected in ABL plasma. These results suggest that while the VLDL and LDL are required for the maximal activity of LCAT, the species of CE formed are primarily determined by the molecular species composition of phosphatidylcholine in the plasma.


Assuntos
Abetalipoproteinemia/sangue , Apolipoproteínas B/farmacologia , Ésteres do Colesterol/sangue , Lipoproteínas/farmacologia , Abetalipoproteinemia/tratamento farmacológico , Humanos , Lipoproteínas LDL/farmacologia , Lipoproteínas VLDL/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA