Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
2.
Zhen Ci Yan Jiu ; 49(3): 247-255, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500321

RESUMO

OBJECTIVES: To observe the effect of Guasha on inflammation factors, apoptosis and autophagy in the cartilage tissue of knee joint in rats with knee osteoarthritis (KOA), so as to explore its mechanisms underlying improvement of KOA. METHODS: A total of 51 male SD rats were randomized into three groups:blank control, KOA model and Guasha (n= 17 in each group) . The rats in the blank control group received intra-articular injection of 0.9% NaCl solution in the right knee joint. The KOA model was established by intraarticular injection of glutamate sodium iodoacetic acid in the right knee joint. For rats of the Guasha group, Guasha (at a frequency of 1 time/s, and an applied pressure of 0.3-0.5 kgf) was applied to "Yanglingquan" (GB34) and "Xuehai"(SP10) areas of the right leg, once every other day, for 7 consecutive sessions. The circumference of the right knee was measured, The histopathological changes of right knee cartilage were observed after H.E. staining. The contents of inflammatory factors interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in the right knee articular cartilage tissue were assayed using ELISA. The expression levels of autophagy-related key molecule Beclin-1 (homologous series of yeast Atg6), light chain protease complication 3 type II/I (LC3II/LC3 I), ubiquitin binding factor 62 (P62) and cysteine aspartate protease-3 (Caspase-3) mRNAs and proteins of the right knee articular cartilage tissue were measured using real-time fluorescent quantitative PCR and Western blot, separately. The apoptosis of chondrocytes was assayed using TUNEL staining, and the immunoactivity of LC3 determined using immunofluorescence staining. RESULTS: After modeling, the right knee circumfe-rence of the model and Guasha groups was significantly increased compared with the blank control group (P<0.01), and after the intervention, the knee circumference of the Guasha group was markedly decreased in comparison with that of the model group (P<0.05). Results of H.E. staining showed obvious degeneration and defects in the cartilage tissue, necrosis of a large number of chondrocytes, fibrous hyperplasia, accompanied by inflammatory cell infiltration, osteoclast increase, fibroplasia and bone trabecular destruction in the model group, which was relatively milder in the Guasha group. Compared with the blank control group, the expression of Beclin-1 and LC3 mRNAs and proteins, and LC immunofluorescence intensity in the right knee articular cartilage tissue were significantly down-regulated (P<0.01, P<0.001), whereas the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, contents of IL-1ß and TNF-α in the right knee articular cartilage tissue considerably increased (P<0.01, P<0.001) in the model group. In contrast to the model group, the Guasha group had an apparent increase in the expression levels of Beclin-1 and LC3 mRNAs and proteins and LC immunofluorescence intensity in the right knee articular cartilage tissue (P<0.05), and a pronounced decrease in the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, and contents of IL-1ß and TNF-α in the right knee articular cartilage tissue (P<0.05, P<0.01). CONCLUSIONS: Guasha stimulation of GB34 and SP10 can improve joint cartilage damage in KOA rats, which may be associated with its functions in inhibiting the excessive release of inflammatory factors and apoptosis, possibly by down-regulating the expression of P62 and Caspase-3 mRNAs and proteins and up-regulating the expression of Beclin-1 and LC3 mRNAs and proteins, and by promoting autophagy of chondrocytes.


Assuntos
Osteoartrite do Joelho , Ratos , Masculino , Animais , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Caspase 3/metabolismo , Condrócitos/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Beclina-1/metabolismo , Apoptose/genética , Autofagia/genética
3.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436544

RESUMO

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Proteínas Ribossômicas , Feminino , Humanos , Apoptose/genética , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Fator de Ligação a CCCTC/genética
4.
Aging (Albany NY) ; 16(1): 299-321, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180752

RESUMO

Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-transcriptional modifications, among which METTL3 is the most common methylation transferase. During the study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/reperfusion (I/R) injury.


Assuntos
Berberina , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Neuroproteção , Astrócitos/metabolismo , MicroRNAs/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Apoptose/genética , Glucose/metabolismo
5.
Zhen Ci Yan Jiu ; 48(12): 1242-1248, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146247

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) on ferroptosis and apoptosis-related proteins in the substantia nigra of midbrain in mice with Parkinson's disease (PD), so as to explore its possible mechanisms in the treatment of PD. METHODS: Twenty-four C57BL/6 mice were randomly divided into blank, model and EA groups, with 8 mice in each group. The PD model was established by continuous gavage of rotenone for 4 weeks. EA was applied at "Baihui" (GV20), "Quchi" (LI11) and "Zusanli" (ST36) for 20 min, once a day for 14 days, with 2-day rest after every 5-day treatment. The open field test was used to evaluate the residence time in the central area, ave-rage movement speed, and total distance of the open field. Western blot was used to detect the protein expression le-vels of divalent metal ion transporter 1 (DMT1), membrane ferroportin 1 (FPN1), glutathione peroxidase 4 (GPX4), proapoptotic protein Bax, and anti apoptotic protein Bcl-2 in the substantia nigra. Immunohistochemical method was used to detect the morphological changes of neurons and the positive expression of tyrosine hydroxylase (TH) in the substantia nigra of mice. RESULTS: After 4 weeks of modeling, compared with the blank group, the residence time in the central area, average speed and total distance of open field were significantly lower (P<0.000 1, P<0.01, P<0.001);the protein expression levels of DMT1 and Bax in the substantia nigra were increased (P<0.001, P<0.000 1), while the protein expression levels of FPN1, GPX4 and Bcl-2, and the optical density of TH+ cells in the substantia nigra were decreased (P<0.000 1, P<0.001) in the model group. In comparison with the model group, the residence time in the central area, average speed, and total distance of the EA group were increased (P<0.01, P<0.05);the protein expression levels of DMT1 and Bax in the substantia nigra were decreased (P<0.01, P<0.001), while the protein expression levels of FPN1, GPX4, and Bcl-2, and the optical density of TH+ cells in the substantia nigra were increased (P<0.000 1, P<0.01, P<0.001, P<0.05). CONCLUSIONS: EA has a protective effect on dopaminergic neurons in the substantia nigra of midbrain in PD model mice, which may be related with its effect in regulating oxidative stress and cell apoptosis induced by ferroptosis.


Assuntos
Eletroacupuntura , Ferroptose , Doença de Parkinson , Ratos , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Ratos Sprague-Dawley , Ferroptose/genética , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Substância Negra/metabolismo , Apoptose/genética , Estresse Oxidativo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Transl Med ; 21(1): 739, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858181

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS: Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS: Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS: Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.


Assuntos
Hepatócitos , Insulinas , Hepatopatias , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/metabolismo , Apoptose/genética , Glucose/metabolismo , Hepatectomia/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Insulinas/metabolismo , Fígado/irrigação sanguínea , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/cirurgia , Transplante de Fígado/efeitos adversos , Fosfatos/metabolismo , Fosfatos/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
7.
Front Immunol ; 14: 1267772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868973

RESUMO

Background: Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods: The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results: We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion: These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.


Assuntos
Crassostrea , Humanos , Animais , Sequência de Bases , Sequência de Aminoácidos , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Crassostrea/metabolismo , Proteína Supressora de Tumor p53/genética , Células HEK293 , Clonagem Molecular , Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/genética , Apoptose/genética
8.
Zhen Ci Yan Jiu ; 48(8): 782-90, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37614136

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture(EA) on the expression of cytosolic phospholipase A2 (cPLA2) and apoptosis of nerve cells in rats with spinal cord injury (SCI), so as to explore its mechanisms underlying improvement of SCI. METHODS: Seventy-two female SD rats were randomly divided into model, EA, antagonist and EA+antagonist groups, with 18 rats in each group and other 18 rats were used as the sham operation (sham) group. The SCI model was established by referring to modified Allen's method with a weight impactor. The hindlimb motor function was assessed by using Basso-Beattie-Bresnahan (BBB) score. Rats of the EA group were subjected to EA stimulation at "Dazhui"(GV14), "Yaoyangguan"(GV3), bilateral "Ciliao"(BL32) and "Zusanli"(ST36) for 20 min, once a day for 14 days. Rats of the antagonist group received intravenous injection followed by intraperitoneal injection of arachidonyl trifluoromethyl ketone (AACOCF3, antagonist of cPLA2), once every other day. Rats of the EA+antagonist group received EA treatment combined with antagonist injection. After the treatment, the rats were sacrificed and the spinal cord tissue was collected for detecting the protein expression of cPLA2, p-cPLA2, Bcl-2, Bax and Caspase-3 by Western blot, and the mRNA expression of cPLA2, Bcl-2, Bax and Caspase-3 using qRT-PCR. The morphological changes of the spinal cord were detected by Nissl staining. RESULTS: In comparison with the sham group, the BBB score, expression of Bcl-2 protein and mRNA were significantly down-regulated (P<0.01), whereas the expression levels of Bax, Caspase-3 and p-cPLA2 proteins and mRNAs were considerably up-regulated in the model group (P<0.01). Compared with the model group, the BBB score, expression levels of Bcl-2 protein and mRNA were significantly up-regulated (P<0.01, P<0.05), while the expression levels of Bax, Caspase-3 and p-cPLA2 proteins in the EA, antagonist and EA+antagonist groups, Bax and cPLA2 mRNAs in both antagonist and EA+antagonist groups, and Caspase-3 mRNA in the EA+antagonist group were obviously down-regulated (P<0.01, P<0.05). The effect of EA+antagonist was significantly superior to EA in increasing BBB score and in lowering expression of Bax and cPLA2 mRNAs (P<0.01, P<0.05). Nissl staining showed reduced number of nerve cells and Nissl bodies, and striped dark blue cells in the model group, which was milder in the EA and antagonist groups, particularly in the EA+antagonist group. CONCLUSION: EA may improve the limb motor function of SCI rats, which may be related to its functions in down-regulating the expression of p-cPLA2, Bax and Caspase-3 and up-regulating Bcl-2 to reduce the apoptosis of nerve cells in the regional spinal cord.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Animais , Feminino , Ratos , Apoptose/genética , Proteína X Associada a bcl-2 , Caspase 3/genética , Extremidade Inferior , Neurônios , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Fosfolipases A2 Citosólicas/metabolismo
9.
Am J Chin Med ; 51(7): 1879-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650421

RESUMO

Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.


Assuntos
Isquemia Miocárdica , Miosina não Muscular Tipo IIA , Espirostanos , Humanos , Dinâmica Mitocondrial , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/genética , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Apoptose/genética
10.
Am J Chin Med ; 51(6): 1595-1611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489112

RESUMO

Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. Therefore, this study explores the molecular mechanism underlying the anticancer effects of cinobufagin in hepatocellular carcinomas (HCCs), specifically in HepG2 and Huh-7 cells. As determined using transcriptome analysis, cinobufagin-triggered protective autophagy suppressed cell apoptosis in liver cancer HepG2 and Huh-7 cells by inhibiting the phosphoinositide-3-Kinase (PI3K)-AKT serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) pathway. Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.


Assuntos
Venenos de Anfíbios , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Qualidade de Vida , Apoptose/genética , Proliferação de Células , Autofagia/genética , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico
11.
J Trace Elem Med Biol ; 79: 127208, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269647

RESUMO

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear. METHODS: 1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing. RESULTS: We identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment. CONCLUSIONS: Our data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Selênio , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Selênio/farmacologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose/genética
12.
Int J Mol Med ; 52(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37387415

RESUMO

Tumor multidrug resistance (MDR) remains one of the most challenging barriers to successful cancer treatment. Several previous studies have suggested that high mobility group box 1 (HMGB1) may be a promising therapeutic target for overcoming cancer drug resistance. Emerging evidence has indicated that HMGB1 functions as a 'double­edged sword' that plays both pro­ and anti­tumor roles in the development and progression of multiple types of cancer. HMGB1 has also been found to be a key regulator of several cell death and signaling pathways, and is involved in MDR by mediating cell autophagy and apoptosis, ferroptosis, pyroptosis and multiple signaling pathways. Additionally, HMGB1 is regulated by a variety of non­coding RNAs (ncRNAs), such as microRNAs, long ncRNAs and circular RNAs that are involved in MDR. Thus far, studies have been conducted to identify strategies with which to overcome HMGB1­mediated MDR by the targeted silencing of HMGB1 and the targeted interference of HMGB1 expression using drugs and ncRNAs. Therefore, HMGB1 is closely associated with tumor MDR and is a promising therapeutic target.


Assuntos
Proteína HMGB1 , Neoplasias , Humanos , Proteína HMGB1/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose/genética , Autofagia/genética , Morte Celular
13.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049977

RESUMO

Inhibition of several protein pathways involved in cancer cell regulation is a necessary key in the discovery of cancer chemotherapy. Moringa oleifera Lam is often used in traditional medicine for the treatment of various illnesses. The plant contains glucomoringin isothiocyanate (GMG-ITC) with therapeutic potential against various cancer cells. Therefore, GMG-ITC was evaluated for its cytotoxicity against the PC-3 prostate cancer cell line and its potential to induce apoptosis. GMG-ITC inhibited cell proliferation in the PC-3 cell line with IC50 value 3.5 µg/mL. Morphological changes as a result of GMG-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GMG-ITC in a time-dependent manner. Moreover, GMG-ITC induced a time-dependent G2/M phase arrest, with reduction of 39.1% in the PC-3 cell line. GMG-ITC also activates apoptotic genes including caspase, tumor suppressor gene (p53), Akt/MAPK, and Bax of the proapoptotic Bcl family. Early apoptosis proteins (JNK, Bad, Bcl2, and p53) were significantly upregulated upon GMG-ITC treatment. It is concluded that apoptosis induction was observed in PC-3 cells treated with GMG-ITC. These phenomena suggest that GMG-ITC from M. oleifera seeds could be useful as a future cytotoxic agent against prostate cancer.


Assuntos
Moringa oleifera , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Proteína Supressora de Tumor p53 , Apoptose/genética , Sementes , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral
14.
Leuk Lymphoma ; 64(6): 1161-1174, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078241

RESUMO

Taurine upregulated gene 1 (TUG1) has been implicated in the onset and progression of various malignancies. The current study aimed to evaluate the biological function and potential mechanisms of TUG1 in multiple myeloma (MM) progression. TUG1 knockdown in MM cells was investigated in vitro and in vivo to evaluate the role of TUG1. We also predicted the transcription factor (TF) that bound to TUG1 together with the downstream target genes of the TUG1-TF interaction, and evaluated the regulatory mechanism of TUG1 in cell assays. TUG1 knockdown reduced the cell's proliferative and migratory capabilities while increasing apoptosis and bortezomib sensitivity in vitro and inhibiting tumorigenesis in vivo. TUG1 was found in the nucleus of MM cells and was found to be positively regulated by the TF-YY1. Further in vitro mechanistic investigations indicated that the YY1-TUG1 complex targeted YOD1 to regulate MM progression.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Apoptose/genética , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Taurina , Tioléster Hidrolases/genética , Fator de Transcrição YY1/genética
15.
Tissue Cell ; 82: 102090, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075681

RESUMO

Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women at reproductive age. The therapeutic effect of electroacupuncture (EA) on PCOS has been revealed, while the anti-PCOS mechanisms of EA have not been fully explored. In this study, PCOS were induced in rats by daily injection with dehydroepiandrosterone (DHEA) for 20 days and EA treatment was performed for 5 weeks. The mRNA expression profiles in ovarian tissues from control, PCOS, and EA-treated rats were examined by high-throughput mRNA sequencing. 5'-aminolevulinate synthase 2 (Alas2), a vital rate-limiting enzyme of the heme synthesis pathway, was selected to be further studied. PCOS led to the upregulation of Alas2 mRNA, whereas EA treatment restored this change. In vitro, primary ovarian granulosa cells (GCs) were challenged with H2O2 to mimic the oxidative stress (OS) state in PCOS. H2O2 induced apoptosis, OS, mitochondrial dysfunction, as well as Alas2 overexpression in GCs, while lentivirus-mediated Alas2 knockdown evidently restrained the above impairments. In summary, this study highlights the crucial role of Alas2 in cell apoptosis, OS, and mitochondrial dysfunction of PCOS GCs and provides potential therapeutic candidates for further investigation on PCOS treatment.


Assuntos
Eletroacupuntura , Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Apoptose/genética , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/metabolismo
16.
J Cell Physiol ; 238(6): 1256-1274, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012668

RESUMO

Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.


Assuntos
Compostos Benzidrílicos , MicroRNAs , Fenóis , Selênio , Animais , Apoptose/genética , Galinhas/genética , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Selênio/metabolismo , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade
17.
Am J Chin Med ; 51(4): 1019-1039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120705

RESUMO

Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. The majority of PCa incidences eventually progress to castration-resistant PCa (CRPC), thereby establishing an urgent need for new effective therapeutic strategies. This study aims to examine the effects of morusin, a prenylated flavonoid isolated from Morus alba L., on PCa progression and identify the regulatory mechanism of morusin. Cell growth, cell migration and invasion, and the expression of EMT markers were examined. Cycle progression and cell apoptosis were examined using flow cytometry and a TUNEL assay, while transcriptome analysis was performed using RNA-seq with results being further validated using real-time PCR and western blot. A xenograft PCa model was used to examine tumor growth. Our experimental results indicated that morusin significantly attenuated the growth of PC-3 and 22Rv1 human PCa cells; moreover, morusin significantly suppressed TGF-[Formula: see text]-induced cell migration and invasion and inhibited EMT in PC-3 and 22Rv1 cells. Significantly, morusin treatment caused cell cycle arrest at the G2/M phase and induced cell apoptosis in PC-3 and 22Rv1 cells. Morusin also attenuated tumor growth in a xenograft murine model. The results of RNA-seq indicated that morusin regulated PCa cells through the Akt/mTOR signaling pathway, while our western blot results confirmed that morusin suppressed phosphorylation of AKT, mTOR, p70S6K, and downregulation of the expression of Raptor and Rictor in vitro and in vivo. These results suggest that morusin has antitumor activities on regulating PCa progression, including migration, invasion, and formation of metastasis, and might be a potential drug for CRPC treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Apoptose/genética , Movimento Celular
18.
Am J Chin Med ; 51(2): 445-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891981

RESUMO

Dihydroartemisinin (DHA) has anticancer effects on multiple tumors, including those associated with breast cancer. This study aimed to investigate the mechanism causing DHA-reversing cisplatin (DDP) resistance in breast cancer. Relative mRNA and protein levels were tested using a qRT-PCR and western blot assay. Cell proliferation, viability, and apoptosis were evaluated using colony formation, MTT, and flow cytometry assays, respectively. Interaction of STAT3 and DDA1 was measured via a dual-luciferase reporter assay. The results showed that DDA1 and p-STAT3 levels were dramatically elevated in DDP-resistant cells. DHA treatment repressed proliferation and induced apoptosis of DDP-resistant cells by suppressing STAT3 phosphorylation; the inhibition ability was positively proportional to the DHA concentration. DDA1 knockdown inhibited cyclin expression, promoted G0/G1 phase arrest, restrained cell proliferation, and induced apoptosis of DDP-resistant cells. Furthermore, knockdown of STAT3 restrained proliferation and induced apoptosis and G0/G1 cell cycle arrest of DDP-resistant cells by targeting DDA1. DHA could restrain tumor proliferation of breast cancer via enhancing drug sensitivity of DDP-resistant cells through the STAT3/DDA1 signaling pathway.


Assuntos
Antineoplásicos , Neoplasias da Mama , MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias Ovarianas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Proliferação de Células , Apoptose/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
19.
J Biomater Sci Polym Ed ; 34(11): 1603-1617, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755525

RESUMO

Tyrosol (TYR) and parthenolide (PLT) have been used as synthetic antioxidant and natural anticancer compounds. In the current study, we aimed to synthesize an encapsulated complex of both PLT and TYR in a hybrid coating layer consisting of lecithin and chitosan molecules, a proper biocompatible drug delivery system to evaluate its antibacterial and anticancer potentials on human liver HepG2 and pancreatic Panc cancer cell lines. The chitosan-lecithin-coated PLT/TYR nanoparticles (clPT-NPs) were synthesized applying an auto-self-assembling method. The clPT-NPs were characterized utilizing DLS, FTIR, zeta potential, and TEM analysis. The clPT-NPs' antioxidant activity was measured by running ABTS and DPPH antioxidant assays. Moreover, the antibacterial potential of clPT-NPs was evaluated by applying disk diffusion, MIC, and MBC assays. Finally, the nanoparticles' cytotoxicity and apoptotic activity were studied by conducting MTT, Flow cytometry, AO/PI cell staining, and real-time PCR techniques. The clPT-NPs (38 nm) exhibited significant antioxidant activity by inhibiting ABTS and DPPH radicals at 187 and 290 µg/mL IC50 concentrations, respectively. Also, the nanoparticles induced a notable antibacterial activity against Staphylococcus aureus at 0.0625 mg/mL MIC and 0.125 mg/mL MBC concentrations. The clPT-NPs selectively decreased the cancer cells' survival and increased the apoptotic dead cells by up-regulating apoptotic gene expression (BAX and Cas-8) and down-regulating BCL-2 anti-apoptotic gene expression. The PLT toxicity has been merged with improved TYR antioxidant activity, which has been functionalized in a safe, biocompatible hybrid nano-delivery system.


Assuntos
Antibacterianos , Antineoplásicos , Antioxidantes , Quitosana , Lecitinas , Nanopartículas , Humanos , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Staphylococcus aureus/efeitos dos fármacos
20.
Phytomedicine ; 112: 154697, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805482

RESUMO

BACKGROUND: Qiangxin recipe (QXF) is a well-known Chinese herbal medicine commonly used in Asia for thousands of years to treat cardiovascular diseases, but its underlying mechanism remains unclear. PURPOSE: This study aimed to illustrate whether Qiangxin Recipe (QXF) induce glucose metabolism and inhibit cardiomyocyte apoptosis by promoting the activation of the transcription factor Krüppel like factor 5 (KLF5). MATERIAL AND METHODS: In vitro experiments, we constructed an H9C2 cardiomyocyte injury model using doxorubicin and used RNA-seq data analysis to detect the mechanism of QXF. In in vivo experiments, C57 BL/6 mice injected with doxorubicin (4 mg/kg every 6 days, for 30 days) to construct a CHF mouse model and randomly divided into to the normal control group, Dox group and Dox+QXF group (2.12 g/kg/day, 4.24 g/kg/day, for 30 days). Using Echocardiography, serum biochemical indices BNP, cTnl; and histopathological tests involving HE staining, Tunel staining and Immuno-dual fluorescence colocalization to analyze the therapeutic mechanism of QXF. RESULTS: We verified that the Qiangxin recipe could reverse cardiomyocyte dying through enhancing glucose metabolism and reducing apoptosis to improve CHF. Mechanistically, we discovered that the Qiangxin recipe promoted the activation of transcription factor Krüppel-like factor 5 (KLF5) to induce glucose metabolism and inhibit apoptosis in cardiomyocytes. Further, we identified that KLF5 increased the promoter activity of hexokinase 2 (HK2) and B-cell CLL/lymphoma 2 (BCL2) genes, which further enhanced glucose metabolism and inhibited apoptosis of cardiomyocytes. CONCLUSIONS: We highlighted the importance of KLF5-mediated signaling pathways in the treatment of CHF as shown by their participation in glucose metabolism and apoptosis in a doxorubicin-induced model of cardiomyocyte injury, as well as show that Qiangxin recipe can be used as a novel targeted therapy for the treatment of CHF. Compared with previous studies, we provide new ideas for the treatment of Doxorubicin-induced CHF from the perspective of energy metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Animais , Camundongos , Apoptose/genética , Doxorrubicina , Glucose/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA