RESUMO
Doxorubicin (Dox), an effective antineoplastic drug, was limited use for cardiotoxicity. Xinshuitong Capsule (XST), a patented herbal formula, showed desirable beneficial effects in the treatment of chronic heart failure (CHF) patients. However, the drug on Dox-induced cardiotoxicity remains unclear. Ninety male Sprague-Dawley rats were randomized into two groups: 15 rats were selected as the normal group and 75 rats were injected intraperitoneally with Dox to establish CHF rat models, the success ones were randomly divided into five groups: low XST (LXST), medium XST (MXST) or high XST (HXST) (4.9, 9.8, or 19.6 g/kg d) administrated intragastrically twice a day for 4 weeks, with the captopril-treated group and the model group as comparison. The model group showed the cardiac functions generally impaired, and CHF mortality rate higher (47%) than those in the XST-treated groups (averaged 24%, P < 0.05). Compared with XST-treated groups, myocardial remodeling, inflammation and desarcomerization, and higher water content more severe in the cardiac tissue in the model group (P < 0.05), which was associated with higher expressions of mRNA or protein levels of AQP1, 4 and 7. Dox-impaired cardiac functions, cardiac remodeling and myocardial edema could be dose-dependently reverted by XST treatment. XST could inhibit AQP1, 4 and 7 at mRNA levels or at protein levels, which was associated with the attenuation of myocardial edema and cardiac remodeling, decreasing the ventricular stiffness and improving the cardiac functions and rats' survival. AQPs is involved in cardiac edema composed one of the mechanisms of Dox-induced cardiotoxicity, XSTvia inhibition of AQPs relieved the Dox-induced side effects.
Assuntos
Aquaporinas/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Edema Cardíaco/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Miocárdio/metabolismo , Administração Oral , Animais , Aquaporina 1/antagonistas & inibidores , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/genética , Aquaporina 4/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Água Corporal/metabolismo , Cápsulas , Cardiotoxicidade , Doença Crônica , Modelos Animais de Doenças , Doxorrubicina , Medicamentos de Ervas Chinesas/administração & dosagem , Edema Cardíaco/induzido quimicamente , Edema Cardíaco/metabolismo , Edema Cardíaco/patologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Miocárdio/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacosRESUMO
The Aquaporins (AQPs) could prove to be striking targets of inflammation. The aim of this study was to study the involvement of AQPs and explore the anti-inflammatory activity of Garcinia extract in LPS induced acute systemic inflammation in Wistar rats. Adult male Wistar rats (n = 6) were pretreated with Garcinia orally twice for 7 days, followed by a single intraperitoneal dose (5.5 mg/kgbw) of LPS. Serum ALT, AST, ALP, Creatinine, Urea and BUN, nitric oxide, prostaglandin, cytokine and chemokine levels were measured. LC-MS analysis of Garcinia was performed to identify the phytoconstituents present. The iNOS and COX enzyme activity were determined in the target tissues. qPCR analysis of inos, cox-2 and aqps was performed. Relative protein expression of AQPs was studied by Western blot analysis. Molecular docking studies were performed to study the interaction of garcinol and hydroxycitric acid, the two important phytoconstituents of Garcinia with AQP. The qPCR analysis showed tissue-specific up-regulation of aqp1, aqp3, aqp4 and aqp8 in LPS induced rats. Garcinia extract treatment effectively lowered the mRNA expression of these AQPs. Garcinia extract significantly inhibited the LPS-induced NO, prostaglandin, cytokine and chemokine production in serum and also decreased tissue-specific transcript level of inos and cox-2, thus suggesting the anti-inflammatory role of Garcinia. Also, docking studies revealed interactions of garcinol and hydroxycitric acid with AQP1, 3, 4 and 8. Therefore, the present study suggests the possible involvement of AQP1, 3, 4 and 8 in inflammation and the efficacy of Garcinia extract as an anti-inflammatory agent. Therefore, AQPs can act as prognostic markers of inflammation and can be targeted with Garcinia extract.
Assuntos
Anti-Inflamatórios/uso terapêutico , Aquaporinas/antagonistas & inibidores , Garcinia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Aquaporinas/biossíntese , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Resultado do TratamentoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lagopsis supina (Steph.) Ik. -Gal. ex Knorr. has been widely used as a remedy treatment for diuresis and edema in China over 2500 years. Our previous results showed that the aqueous soluble fraction from L. supina (LSB) possessed acute diuretic effect. AIM OF THE STUDY: The aim of this study was to appraise the acute (6 h) and prolonged (7 d) diuretic effects, underlying mechanisms, and chemical profiling of LSB. MATERIALS AND METHODS: The chemical profiling of LSB was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). Then, oral administration of LSB (40, 80, 160 and 320 mg/kg) and furosemide (10 mg/kg) once daily for 7 consecutive days to evaluate the diuretic effects in saline-loaded rats. The body weight, food consumption, and water intake were recorded once daily. The urinary volume, pH and electrolyte concentrations (Na+, K+, Cl-, and Ca2+) were measured after administration drugs for acute and prolonged diuretic effects. In addition, the serum levels of Na+-K+-ATPase, angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), atriopeptin (ANP), aquaporins (AQPs)-1, 2 and 3 were determined by ELISA kits. The mRNA expressions and protein levels of AQPs-1, 2 and 3 were analyzed by real-time quantitative PCR and Western blot assays, respectively. RESULTS: 30 compounds were identified in LSB based on accurate mass and MS/MS fragmentation compared to literature, among which phenylpropanoids and flavonoids could be partly responsible for the major diuretic effect. Daily administration of LSB (160 or 320 mg/kg) prominently increased urinary excretion volume after the 2 h at the first day of treatment, remaining until the 7th day. LSB did not cause Na+ and K+ electrolyte abnormalities, and has minor effect on Cl- and Ca2+ concentrations at 320 mg/kg. Furthermore, LSB observably suppressed renin-angiotensin-aldosterone system (RAAS) activation, including decreased serum levels of Ang II, ADH, and ALD, and prominently increased serum level of ANP in rats. LSB treatment significantly down-regulated the serum levels, mRNA expressions and protein levels of AQP1, AQP2, and AQP3. CONCLUSION: LSB has a prominent acute and prolonged diuretic effects via suppression of AQP and RAAS pathways in saline-loaded rats, and support the traditional folk use of this plant. Taken together, LSB might be a potential diuretic agent.
Assuntos
Aquaporinas/antagonistas & inibidores , Diuréticos/farmacologia , Lamiaceae/química , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Aquaporinas/sangue , Aquaporinas/genética , Aquaporinas/metabolismo , Peso Corporal/efeitos dos fármacos , Diuréticos/sangue , Diuréticos/uso terapêutico , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Eletrólitos/metabolismo , Masculino , Ratos Sprague-Dawley , Sódio/administração & dosagem , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Solubilidade , Urina , Água/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lagopsis supina has been used as a traditional medicinal herb for centuries in China. In folk medicine, it is used for promoting blood circulation and removing blood stasis (PBCRBS), anti-inflammatory and diuretic activities. Modern pharmacological investigation have shown that L. supina have an improvement in blood and lymphatic microcirculation, myocardioprotective, and antioxidative activities. Although the pharmacological research of L. supina was more, there was no report on the diuretic activity. AIM OF THE STUDY: This study was to evaluate the diuretic activity and the underlying mechanism of an ethanol extract of L. supina (LS) in a rat model of traumatic blood stasis (TBS). MATERIALS AND METHODS: There were 30 male Sprague-Dawley rats that were randomly assigned to the control group, TBS group, and LS group (10 animals in each group). LS was administered orally (460â¯mg/kg) once daily for 7 successive days. The control group and TBS group were given an equal amount of 0.3% sodium carboxymethyl cellulose (CMC-Na). For the efficacy evaluation, the urine output volume, the urinary electrolyte concentrations (Na+, K+, Cl- and Ca2+) and pH value, the levels of angiotensin II (Ang II), atriopeptin (ANP), anti-diuretic hormone (ADH) and aldosterone (ALD), as well as aquaporin (AQP)-1, 2 and 3 protein expressions were detected in a rat model of TBS. The protein expressions of AQP-1, 2 and 3 were detected by quantitative immunohistochemistry (IHC) and Western blot analysis. RESULTS: In the efficacy evaluation, rat models treated with LS showed a significant increase in the total urine output (pâ¯<â¯0.01). The urinary electrolyte and the acid-base disturbances, including the decrease of Na+ and Ca2+ levels and the Na+/K+ value together with the increase in the Cl- level and the pH value, in the urine of the LS group were compared with the TBS group. Moreover, the levels of Ang II, ADH and ALD of rat model were decreased after being treated with LS (pâ¯<â¯0.05 or pâ¯<â¯0.01), while the ANP level was increased (pâ¯<â¯0.05). In addition, the results of the quantitative IHC and the Western blot analysis showed that the expression levels of AQP-1, 2 and 3 proteins decreased significantly compared with those of the TBS group. CONCLUSIONS: This is the first reported notable diuretic effect by LS, which probably was through the suppression of the renin-angiotensin-aldosterone system (RAAS) and the regulation of the signaling pathways of AQP-1, 2 and 3 protein expressions. Based on our results, we conclude that L. supina carries out its diuretic effect mainly by down-regulating the levels of AQP-1, 2 and 3 expressions in TBS rat model. These data also embody the traditional Chinese medicine (TCM) application principle of Huo xue li shui. These findings suggest that LS may warrant further evaluation as a possible agent for the diuretic drug in clinical applications. Further research is underway to elucidate the active compounds responsible for the diuretic activity of LS.
Assuntos
Aquaporinas/antagonistas & inibidores , Diuréticos/farmacologia , Lamiaceae , Extratos Vegetais/farmacologia , Animais , Aquaporinas/metabolismo , Circulação Sanguínea/efeitos dos fármacos , Diuréticos/uso terapêutico , Hormônios/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Extratos Vegetais/uso terapêutico , Ratos Sprague-DawleyRESUMO
Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, with the lowest Jsm-urea being observed in animals fed CON [107.7 nmol/(cm(2) × h)] and the highest for those fed the MGD for 21 d [144.2 nmol/(cm(2) × h)]. Phloretin-insensitive Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, whereas NiCl2-insensitive Jsm-urea tended to be affected by diet. Gene transcript abundance for AQP-3 and UT-B in ruminal epithelium increased linearly as the duration of MGD adaptation increased. For AQP-7 and AQP-10, gene transcript abundance in animals that were fed the MGD was greater compared with that of CON animals. These results demonstrate that both AQP and UT-B play significant functional roles in urea transport, and they may play a role in urea transport during dietary adaptation to fermentable carbohydrates.
Assuntos
Aquaporinas/metabolismo , Bovinos/metabolismo , Dieta/veterinária , Proteínas de Membrana Transportadoras/metabolismo , Rúmen/metabolismo , Ureia/metabolismo , Animais , Aquaporinas/antagonistas & inibidores , Aquaporinas/genética , Transporte Biológico , Reatores Biológicos , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Suplementos Nutricionais , Grão Comestível , Epitélio/metabolismo , Fermentação , Masculino , Proteínas de Membrana Transportadoras/genética , Minerais/administração & dosagem , Mucosa , Níquel/farmacologia , Floretina/farmacologia , RNA Mensageiro/análise , Vitaminas/administração & dosagem , Transportadores de UreiaRESUMO
Aquaporins are protein channels that facilitate the flow of water across plasma cell membranes in response to osmotic gradients. This review summarizes the evidence that aquaporins play key roles in tumor biology including tumor-associated edema, tumor cell migration, tumor proliferation and tumor angiogenesis. Aquaporin inhibitors may thus be a novel class of anti-tumor agents. However, attempts to produce small molecule aquaporin inhibitors have been largely unsuccessful. Recently, monoclonal human IgG antibodies against extracellular aquaporin-4 domains have become available and could be engineered to kill aquaporin-4 over-expressing cells in the malignant brain tumor glioblastoma. We conclude this review by discussing future directions in aquaporin tumor research. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Aquaporinas/genética , Neoplasias Encefálicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Anticorpos Monoclonais/química , Antineoplásicos/química , Aquaporinas/antagonistas & inibidores , Aquaporinas/metabolismo , Transporte Biológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/uso terapêutico , Imunotoxinas/química , Neovascularização Patológica/prevenção & controle , Osmose , Transdução de Sinais , Água/metabolismoRESUMO
Schistosomes are parasitic platyhelminths that constitute an important public health problem globally. Infection is characterized by the presence of adult worms within the vasculature of their hosts, where they can reside for many years. The worms are covered by an unusual dual lipid bilayer through which they import nutrients. How the parasites import other vital molecules, such as water, is not known. Recent proteomic analysis of the schistosome tegumental membranes revealed the presence of an aquaporin homologue at the host-interactive surface whose cDNA we have cloned and characterized. The cDNA encodes a predicted 304-aa protein (SmAQP) that is found largely in the parasite tegument by immunolocalization and is most highly expressed in the intravascular life stages. Treatment of parasites with short interfering RNAs targeting the SmAQP gene results in potent (>90%) suppression. These suppressed parasites resist swelling when placed in hypotonic medium, unlike their control counterparts, which rapidly double in volume. In addition, SmAQP-suppressed parasites, unlike controls, resist shrinkage when incubated in hyperosmotic solution. While suppressed parasites exhibit lower viability in culture relative to controls and exhibit a stunted appearance following prolonged suppression, they are nonetheless more resistant to killing by the drug potassium antimonyl tartrate (PAT). This is likely because SmAQP acts as a conduit for this drug, as is the case for aquaporins in other systems. These experiments reveal a heretofore unrecognized role of the schistosome tegument in controlling water and drug movement into the parasites and highlight the importance of the tegument in parasite osmoregulation and drug uptake.
Assuntos
Aquaporinas/metabolismo , Proteínas de Helminto/metabolismo , Schistosoma mansoni/metabolismo , Sequência de Aminoácidos , Animais , Tartarato de Antimônio e Potássio/farmacocinética , Aquaporinas/antagonistas & inibidores , Aquaporinas/genética , Sequência de Bases , Transporte Biológico Ativo , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , DNA de Helmintos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Filogenia , RNA Interferente Pequeno/genética , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomicidas/farmacocinética , Homologia de Sequência de Aminoácidos , Equilíbrio HidroeletrolíticoRESUMO
Survival of freezing not only requires organisms to tolerate ice formation within their body, but also depends on the rapid redistribution of water and cryoprotective compounds between intra- and extracellular compartments. Aquaporins are transmembrane proteins that serve as the major pathway through which water and small uncharged solutes (e.g. glycerol) enter and leave the cell. Consequently, we examined freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis, to determine whether aquaporins are present and if their presence promotes freeze tolerance of specific tissues. Immunoblotting with mammalian anti-AQP2, -AQP3 and -AQP4 revealed corresponding aquaporin homologues in E. solidaginis, whose patterns of expression varied depending on acclimation temperature and desiccation treatment. To examine the role of aquaporins in freeze tolerance, we froze fat body, midgut and salivary gland tissues in the presence and absence of mercuric chloride, an aquaporin inhibitor. Survival of fat body and midgut cells was significantly reduced when mercuric chloride was present. In contrast, survival of the salivary gland did not decrease when it was frozen with mercuric chloride. Overall, this study supports our hypothesis that naturally occurring aquaporins in E. solidaginis are regulated during desiccation and promote cell survival during freezing.
Assuntos
Adaptação Fisiológica , Aquaporinas/metabolismo , Desidratação/metabolismo , Dessecação , Congelamento , Solidago/parasitologia , Tephritidae/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Aquaporinas/antagonistas & inibidores , Aquaporinas/imunologia , Compostos Azo , Extratos Celulares , Corpo Adiposo/citologia , Corpo Adiposo/efeitos dos fármacos , Trato Gastrointestinal/citologia , Trato Gastrointestinal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Cloreto de Mercúrio/farmacologia , Microscopia de Fluorescência , Glândulas Salivares/citologia , Glândulas Salivares/efeitos dos fármacos , Solidago/efeitos dos fármacos , Tephritidae/efeitos dos fármacos , Sobrevivência de Tecidos/efeitos dos fármacosRESUMO
Aquaporins mediate transport of water or small, uncharged solutes across cellular membranes according to the prevailing osmotic and chemical gradients. Because of their implication in human diseases and pathophysiological states, aquaporins are considered as potential drug targets. Yet, specific aquaporin inhibitors for in vivo studies are not available. Common functional aquaporin assays that monitor biophysical parameters related to volume changes, such as light scattering or fluorescence quenching, are time consuming and require costly equipment. Hence, they are not well geared for screening large numbers of compounds. In this paper, we describe a less demanding phenotypic yeast-based assay on 96-well microplates. The assay uses a methylamine-sensitive yeast strain in which a methylamine-permeable test aquaporin is expressed to rescue proliferation on selection plates. Specific inhibition of the aquaporin directly correlates to reduced cell proliferation.
Assuntos
Aquaporinas/antagonistas & inibidores , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Avaliação Pré-Clínica de Medicamentos , Metilaminas/metabolismo , Permeabilidade , Fenótipo , Bloqueadores dos Canais de Potássio/farmacologia , Tetraetilamônio/farmacologiaRESUMO
Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of root cells less sensitive to K+. C9 decreased the rate of turgor reduction induced by sorbitol solution to the same extent as HgCl2. Thus, C9 is assumed to decrease the hydraulic conductivity (Lp) of the plasma membrane by blocking water channels, although possible inhibition of the plasmodesmata of the root symplast by C9 cannot be excluded. Onion roots transported water from the tip to the base in the absence of the osmotic gradient. This non-osmotic water flux (Jnos) was equivalent to Jos induced by 0.029 M sorbitol. Jnos increased when Jos was increased by repetition of osmosis and decreased when Jos was decreased by either HgCl2 or by C9. The correlation between Jnos and Jos suggests that non-osmotic water transport occurs via the same pathways as those for osmotic water transport.