Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 295(4): 1063-1078, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333171

RESUMO

Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Tylenchoidea/patogenicidade , Animais , Arachis/genética , Arachis/parasitologia , Café/genética , Café/parasitologia , Produtos Agrícolas/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Genômica , Genótipo , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genética
2.
PLoS One ; 12(4): e0175940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423007

RESUMO

Peanut is a major oilseed crop worldwide. In the Brazilian peanut production, silvering thrips and red necked peanut worm are the most threatening pests. Resistant varieties are considered an alternative to pest control. Many wild diploid Arachis species have shown resistance to these pests, and these can be used in peanut breeding by obtaining hybrid of A and B genomes and subsequent polyploidization with colchicine, resulting in an AABB amphidiploid. This amphidiploid can be crossed with cultivated peanut (AABB) to provide genes of interest to the cultivar. In this study, the sterile diploid hybrids from A. magna V 13751 and A. kempff-mercadoi V 13250 were treated with colchicine for polyploidization, and the amphidiploids were crossed with A. hypogaea cv. IAC OL 4 to initiate the introgression of the wild genes into the cultivated peanut. The confirmation of the hybridity of the progenies was obtained by: (1) reproductive characterization through viability of pollen, (2) molecular characterization using microsatellite markers and (3) morphological characterization using 61 morphological traits with principal component analysis. The diploid hybrid individual was polyploidized, generating the amphidiploid An 13 (A. magna V 13751 x A. kempff-mercadoi V 13250)4x. Four F1 hybrid plants were obtained from IAC OL 4 × An 13, and 51 F2 seeds were obtained from these F1 plants. Using reproductive, molecular and morphological characterizations, it was possible to distinguish hybrid plants from selfed plants. In the cross between A. hypogaea and the amphidiploid, as the two parents are polyploid, the hybrid progeny and selves had the viability of the pollen grains as high as the parents. This fact turns the use of reproductive characteristics impossible for discriminating, in this case, the hybrid individuals from selfing. The hybrids between A. hypogaea and An 13 will be used in breeding programs seeking pest resistance, being subjected to successive backcrosses until recovering all traits of interest of A. hypogaea, keeping the pest resistance.


Assuntos
Arachis/genética , Cruzamentos Genéticos , Genoma de Planta , Pólen/genética , Poliploidia , Sementes/genética , Animais , Arachis/efeitos dos fármacos , Arachis/imunologia , Arachis/parasitologia , Mapeamento Cromossômico , Colchicina/farmacologia , Helmintos/patogenicidade , Helmintos/fisiologia , Hibridização Genética , Repetições de Microssatélites , Mutagênicos/farmacologia , Filogenia , Melhoramento Vegetal/métodos , Imunidade Vegetal/genética , Pólen/efeitos dos fármacos , Pólen/imunologia , Análise de Componente Principal , Sementes/efeitos dos fármacos , Sementes/imunologia , Tisanópteros/patogenicidade , Tisanópteros/fisiologia
3.
PLoS One ; 12(2): e0171948, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182679

RESUMO

We tested the behavioral responses of ovipositing females and natal larvae of two sibling species, a generalist Helicoverpa armigera (Hübner) and a specialist Helicoverpa assulta (Guenée), to odor sources emitted from different combinations of six plant species (tobacco, Nicotiana tabacum; hot pepper, Capsicum annuum; tomato, Solanum esculentum; cotton, Gossypium hirsutum; peanut, Arachis hypogaea; maize, Zea mays). Under the conditions of plant materials versus corresponding controls, both stages of both species could find their corresponding host plants. However, H. assulta females and larvae exhibited a supersensitive and an insensitive response, respectively. Under the conditions of tobacco paired with each plant species, H. assulta females exhibited more specialized ovipositional response to tobacco than its sibling. When each plant species were combined with tobacco and tested against tobacco reference, peanut played an opposite role in the two species in their ovipositional responses to tobacco, and cotton can enhance the approaching response of H. armigera larvae when combined with tobacco. It seems that two attractive host plants also can act antagonistically with respect to host selection of the generalist via volatile exchange. Tomato should better be excluded from host list of H. assulta.


Assuntos
Especificidade de Hospedeiro , Mariposas/patogenicidade , Animais , Arachis/parasitologia , Biodiversidade , Capsicum/parasitologia , Feminino , Gossypium/parasitologia , Masculino , Mariposas/fisiologia , Oviposição , Solanum/parasitologia , Zea mays/parasitologia
4.
Anal Biochem ; 312(2): 242-50, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531212

RESUMO

Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive, and reproducible quantification of both compounds by vapor-phase extraction and gas chromatography-positive ion chemical ionization-mass spectrometry. The method is based on a one-step extraction, phase partitioning, methylation with HCl/methanol, and collection of methylated and, thus, volatilized compounds on Super Q filters, thereby omitting further purification steps. Eluted samples are analyzed and quantified by GC/MS with chemical ionization. Standard curves were linear over a range of 5-1000 ng for jasmonic acid and salicylic acid. The correlation coefficients were greater than 0.999 and the recovery rates estimated between 70 and 90% for salicylic acid and 90 and 100% for jasmonic acid. The limit of detection was about 500 fg by using single ion detection mode. Both, cis- and trans-isomers for jasmonic acid can be detected. A comparison with established methods indicates the new method to be highly efficient, allowing reliable quantification of both compounds from small amounts of plant material (5-400mg fresh weight).


Assuntos
Ciclopentanos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas/química , Ácido Salicílico/análise , Alameticina/farmacologia , Animais , Arachis/química , Arachis/parasitologia , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Gases/química , Oxilipinas , Extratos Vegetais/química , Sensibilidade e Especificidade , Spodoptera/fisiologia , Nicotiana/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA