Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut Microbes ; 13(1): 1966277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34486488

RESUMO

Clostridioides difficile is the causative agent of antibiotic-associated diarrhea, a worldwide public health problem. Different factors can promote the progression of C. difficile infection (CDI), mainly altered intestinal microbiota composition. Microbial species belonging to different domains (i.e., bacteria, archaea, eukaryotes, and even viruses) are synergistically and antagonistically associated with CDI. This review was aimed at updating changes regarding CDI-related human microbiota composition using recent data and an integral approach that included the different microorganism domains. The three domains of life contribute to intestinal microbiota homeostasis at different levels in which relationships among microorganisms could explain the wide range of clinical manifestations. A holistic understanding of intestinal ecosystem functioning will facilitate identifying new predictive factors for infection and developing better treatment and new diagnostic tools, thereby reducing this disease's morbidity and mortality.


Assuntos
Archaea/classificação , Clostridioides difficile/classificação , Eucariotos/classificação , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Archaea/isolamento & purificação , Clostridioides difficile/crescimento & desenvolvimento , Enterocolite Pseudomembranosa/patologia , Eucariotos/isolamento & purificação , Humanos
2.
Nat Commun ; 12(1): 5398, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518545

RESUMO

As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.


Assuntos
Ciclo do Carbono , Células Procarióticas/virologia , Esgotos/virologia , Viroma/genética , Vírus/genética , Purificação da Água/métodos , Archaea/classificação , Archaea/genética , Archaea/virologia , Bactérias/classificação , Bactérias/genética , Bactérias/virologia , Metabolismo Energético/genética , Genes Virais/genética , Variação Genética , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta/genética , Células Procarióticas/metabolismo , Análise de Sequência de DNA/métodos , Esgotos/microbiologia , Vírus/classificação , Vírus/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121206

RESUMO

Regarding the unfavourable changes in agroecosystems resulting from the excessive application of mineral fertilizers, biopreparations containing live microorganisms are gaining increasing attention. We assumed that the application of phosphorus mineral fertilizer enriched with strains of beneficial microorganisms contribute to favourable changes in enzymatic activity and in the genetic and functional diversity of microbial populations inhabiting degraded soils. Therefore, in field experiments conditions, the effects of phosphorus fertilizer enriched with bacterial strains on the status of soil microbiome in two chemically degraded soil types (Brunic Arenosol - BA and Abruptic Luvisol - AL) were investigated. The field experiments included treatments with an optimal dose of phosphorus fertilizer (without microorganisms - FC), optimal dose of phosphorus fertilizer enriched with microorganisms including Paenibacillus polymyxa strain CHT114AB, Bacillus amyloliquefaciens strain AF75BB and Bacillus sp. strain CZP4/4 (FA100) and a dose of phosphorus fertilizer reduced by 40% and enriched with the above-mentioned bacteria (FA60). The analyzes performed included: the determination of the activity of the soil enzymes (protease, urease, acid phosphomonoesterase, ß-glucosidase), the assessment of the functional diversity of microorganisms with the application of BIOLOGTM plates and the characterization of the genetic diversity of bacteria, archaea and fungi with multiplex terminal restriction fragment length polymorphism and next generation sequencing. The obtained results indicated that the application of phosphorus fertilizer enriched with microorganisms improved enzymatic activity, and the genetic and functional diversity of the soil microbial communities, however these effects were dependent on the soil type.


Assuntos
Archaea/classificação , Bactérias/classificação , Fertilizantes/microbiologia , Fungos/classificação , Fósforo/farmacologia , Microbiologia do Solo , Archaea/efeitos dos fármacos , Archaea/genética , Bacillus amyloliquefaciens/fisiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Enzimas/metabolismo , Fungos/efeitos dos fármacos , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Paenibacillus polymyxa/fisiologia , Filogenia , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 117(20): 11029-11037, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354993

RESUMO

Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Microbiota/fisiologia , Água do Mar/microbiologia , Alcanos/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Golfo do México , Metagenoma , Metagenômica , Petróleo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
5.
J Dairy Sci ; 103(4): 3204-3218, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32113756

RESUMO

The aim of this study was to determine the effect of calcium propionate (CaP) on rumen microbiota, fermentation indicators, and weight gain in calves both pre- and postweaning. Twenty-four newborn calves were randomly divided into 4 groups (2 × 2 factorial treatment arrangement): either pre- (90 d) or postweaning (160 d), and either without or with dietary CaP supplementation (5% dry matter). The CaP supplementation increased the body weight and rumen weight of the calves and lowered NH3-N concentration in the rumen. Microbiota composition was characterized by sequencing the amplicons of the bacterial and archaeal 16S rRNA genes. The CaP supplementation decreased the relative abundance of the phylum Bacteroidetes but tended to increase that of Proteobacteria. In addition, CaP supplementation decreased the diversity of bacteria and archaea in the rumen compared with the calves fed the control diet. Linear discriminant analysis of the rumen microbiota revealed that Succinivibrionaceae and Methanobrevibacter were enriched in the CaP group postweaning. A correlation was also present between the acetate to propionate ratio and the species that acted as co-occurrence network hubs, including Succiniclasticum, Treponema, and Megasphaera. In conclusion, CaP supplementation can improve body weight gain and rumen growth and alter the ruminal microbiota in calves both pre- and postweaning.


Assuntos
Ração Animal , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bovinos , Suplementos Nutricionais , Microbiota , Propionatos/farmacologia , Rúmen/microbiologia , Animais , Animais Recém-Nascidos , Archaea/classificação , Bactérias/classificação , Dieta/veterinária , Fermentação , Masculino , RNA Ribossômico 16S , Rúmen/efeitos dos fármacos , Rúmen/metabolismo , Aumento de Peso
6.
Microbiologyopen ; 9(1): e00942, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568679

RESUMO

In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Fertilizantes/análise , Solo/química , Archaea/crescimento & desenvolvimento , China , Compostos de Nitrogênio/análise , Oxirredução , Fósforo/análise , Potássio/análise , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento
7.
J Microbiol ; 57(12): 1095-1104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31758395

RESUMO

Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]-hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Metagenoma , Microbiota/fisiologia , Regiões Antárticas , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Ciclo do Carbono , Crescimento Quimioautotrófico , Comamonadaceae/enzimologia , Comamonadaceae/metabolismo , Genes Arqueais/genética , Genes Bacterianos/genética , Hidrogenase/classificação , Hidrogenase/genética , Hidrogenase/isolamento & purificação , Redes e Vias Metabólicas , Microbiota/genética , Nitratos/metabolismo , Fosforilação Oxidativa , Fotossíntese , Análise de Sequência de DNA
8.
Sci Rep ; 9(1): 14883, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619759

RESUMO

Control of common scab disease can be reached by resistant cultivars or suppressive soils. Both mechanisms are likely to translate into particular potato microbiome profiles, but the relative importance of each is not known. Here, microbiomes of bulk and tuberosphere soil and of potato periderm were studied in one resistant and one susceptible cultivar grown in a conducive and a suppressive field. Disease severity was suppressed similarly by both means yet, the copy numbers of txtB gene (coding for a pathogenicity determinant) were similar in both soils but higher in periderms of the susceptible cultivar from conducive soil. Illumina sequencing of 16S rRNA genes for bacteria (completed by 16S rRNA microarray approach) and archaea, and of 18S rRNA genes for micro-eukarytes showed that in bacteria, the more important was the effect of cultivar and diversity decreased from resistant cultivar to bulk soil to susceptible cultivar. The major changes occurred in proportions of Actinobacteria, Chloroflexi, and Proteobacteria. In archaea and micro-eukaryotes, differences were primarily due to the suppressive and conducive soil. The effect of soil suppressiveness × cultivar resistance depended on the microbial community considered, but differed also with respect to soil and plant nutrient contents particularly in N, S and Fe.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Suscetibilidade a Doenças/imunologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/patogenicidade , Archaea/classificação , Archaea/genética , Archaea/patogenicidade , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/patogenicidade , Produtos Agrícolas , Resistência à Doença/efeitos dos fármacos , Células Eucarióticas/metabolismo , Técnicas de Genotipagem , Ferro/metabolismo , Ferro/farmacologia , Microbiota/genética , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Doenças das Plantas/imunologia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/patogenicidade , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/imunologia , Enxofre/metabolismo , Enxofre/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Future Microbiol ; 14: 623-641, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31025880

RESUMO

Breastfeeding is a major determinant of human health. Breast milk is not sterile and ecological large-scale sequencing methods have revealed an unsuspected microbial diversity that plays an important role. However, microbiological analysis at the species level has been neglected while it is a prerequisite before understanding which microbe is associated with symbiosis or dysbiosis, and health or disease. We review the currently known bacterial repertoire from the human breast and milk microbiota using a semiautomated strategy. Total 242 articles from 38 countries, 11,124 women and 15,489 samples were included. Total 820 species were identified mainly composed of Proteobacteria and Firmicutes. We report variations according to the analytical method (culture or molecular method), the anatomical site (breast, colostrum or milk) and the infectious status (healthy control, mastitis, breast abscess, neonatal infection). In addition, we compared it with the other human repertoires. Finally, we discuss its putative origin and role in health and disease.


Assuntos
Mama/microbiologia , Microbiota , Leite Humano/microbiologia , Abscesso/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Aleitamento Materno , Colostro/microbiologia , Bases de Dados Factuais , Disbiose , Feminino , Humanos , Mastite/microbiologia , Simbiose
10.
Microbes Environ ; 34(2): 121-128, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-30905894

RESUMO

Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.


Assuntos
Biodegradação Ambiental , Consórcios Microbianos , Óleo de Palmeira/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Aerobiose , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Reatores Biológicos/microbiologia , Lignina/metabolismo , Metano/biossíntese
11.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30927421

RESUMO

Understanding the interplay between the farming system and soil microbiomes could aid the design of a sustainable and efficient farming system. A comparative greenhouse experiment consisting of organic (ORG), integrated (INT) and conventional (CON) farming systems was established in northern China in 2002. The effects of 12 years of organic farming on soil microbiomes were explored by metagenomic and 16S rRNA gene amplicon sequencing analyses. Long-term ORG shifted the community composition of dominant phyla, especially Acidobacteria, increased the relative abundance of Ignavibacteria and Acidobacteria Gp6 and decreased the relative abundance of Nitrosomonas, Bacillus and Paenibacillus. Metagenomic analysis further revealed that relative abundance of ammonia oxidizing microorganisms (Bacteria and Archaea) and anaerobic ammonium oxidation bacteria decreased during ORG. Conversely, the relative abundance of bacteria-carrying periplasmic nitrate reductases (napA) was slightly higher for ORG. Long-term organic farming also caused significant alterations to the community composition of functional groups associated with ammonia oxidation, denitrification and phosphorus recycling. In summary, this study provides key insights into the composition of soil microbiomes and long-term organic farming under greenhouse conditions.


Assuntos
Amônia/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Acidobacteria/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Desnitrificação , Metagenoma , Ciclo do Nitrogênio , Agricultura Orgânica , Filogenia , Solo/química , Fatores de Tempo
12.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504215

RESUMO

Dietary supplementation with linseed, saponins, and nitrate is a promising methane mitigation strategy in ruminant production. Here, we aimed to assess the effects of these additives on the rumen microbiota in order to understand underlying microbial mechanisms of methane abatement. Two 2-by-2 factorial design studies were conducted simultaneously, which also allowed us to make a broad-based assessment of microbial responses. Eight nonlactating cows were fed diets supplemented with linseed or saponin in order to decrease hydrogen production and nitrate to affect hydrogen consumption; also, combinations of linseed plus nitrate or saponin plus nitrate were used to explore the interaction between dietary treatments. Previous work assessed effects on methane and fermentation patterns. Rumen microbes were studied by sequencing 18S and 16S rRNA genes and ITS1 amplicons. Methanogen activity was monitored by following changes in mcrA transcript abundance. Nitrate fed alone or in combination in both studies dramatically affected the composition and structure of rumen microbiota, although impacts were more evident in one of the studies. Linseed moderately modified only bacterial community structure. Indicator operational taxonomic unit (OTU) analysis revealed that both linseed and nitrate reduced the relative abundance of hydrogen-producing Ruminococcaceae Linseed increased the proportion of bacteria known to reduce succinate to propionate, whereas nitrate supplementation increased nitrate-reducing bacteria and decreased the metabolic activity of rumen methanogens. Saponins had no effect on the microbiota. Inconsistency found between the two studies with nitrate supplementation could be explained by changes in microbial ecosystem functioning rather than changes in microbial community structure.IMPORTANCE This study aimed at identifying the microbial mechanisms of enteric methane mitigation when linseed, nitrate, and saponins were fed to nonlactating cows alone or in a combination. Hydrogen is a limiting factor in rumen methanogenesis. We hypothesized that linseed and saponins would affect hydrogen producers and nitrate would affect hydrogen consumption, leading to reduced methane production in the rumen. Contrary to what was predicted, both linseed and nitrate had a deleterious effect on hydrogen producers; linseed also redirected hydrogen consumption toward propionate production, whereas nitrate stimulated the growth of nitrate-reducing and, hence, hydrogen-consuming bacterial taxa. This novel knowledge of microbial mechanisms involved in rumen methanogenesis provides insights for the development and optimization of methane mitigation strategies.


Assuntos
Suplementos Nutricionais , Linho/metabolismo , Microbiota/efeitos dos fármacos , Nitratos/metabolismo , Rúmen/microbiologia , Saponinas/metabolismo , Ração Animal , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos , Dieta/veterinária , Digestão/efeitos dos fármacos , Combinação de Medicamentos , Fermentação , Hidrogênio/metabolismo , Metano/metabolismo , Nitratos/farmacologia , RNA Ribossômico 16S/genética , Saponinas/farmacologia
13.
BMC Microbiol ; 18(1): 151, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348104

RESUMO

BACKGROUND: Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. RESULTS: All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. CONCLUSION: Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge.


Assuntos
Bactérias Anaeróbias/classificação , Hidrocarbonetos/metabolismo , Metano/biossíntese , Petróleo/metabolismo , Esgotos/microbiologia , Bactérias Redutoras de Enxofre/classificação , Archaea/classificação , Archaea/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Biodegradação Ambiental , Fermentação , Índia , Consórcios Microbianos , Petróleo/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
14.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101289

RESUMO

Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.


Assuntos
Dióxido de Carbono/análise , Microbiota , Campos de Petróleo e Gás/microbiologia , Indústria de Petróleo e Gás/métodos , Petróleo/microbiologia , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , Microbiota/genética , Campos de Petróleo e Gás/química
15.
Microb Biotechnol ; 11(4): 710-720, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29896929

RESUMO

Ammonia accumulation is a major inhibitory substance causing anaerobic digestion upset and failure in CH4 production. At high ammonia levels, CH4 production through syntrophic acetate oxidization (SAO) pathways is more tolerant to ammonia toxicity than the acetoclastic methanogenesis pathway, but the low CH4 production rate through SAO constitutes the main reason for the low efficiency of energy recovery in anaerobic digesters treating ammonia-rich substrates. In this study, we showed that acetate fermentation to CH4 and CO2 occurred through SAO pathway in the anaerobic reactors containing a high ammonia concentration (5.0 g l-1 NH4+ -N), and the magnetite nanoparticles supplementation increased the CH4 production rates from acetate by 36-58%, compared with the anaerobic reactors without magnetite under the same ammonia level. The mechanism of facilitated methanogenesis was proposed to be the establishment of direct interspecies electron transfer (DIET) for SAO, in which magnetite facilitated DIET between syntrophic acetate oxidizing bacteria and methanogens. High-throughput 16S rRNA gene sequencing analysis revealed that the bacterial Geobacteraceae and the archaeal Methanosarcinaceae and Methanobacteriaceae might be involved in magnetite-mediated DIET for SAO and CH4 production. This study demonstrated that magnetite supplementation might provide an effective approach to accelerate CH4 production rates in the anaerobic reactors treating wastewater containing high ammonia.


Assuntos
Acetatos/metabolismo , Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Óxido Ferroso-Férrico/metabolismo , Metano/metabolismo , Amônia/análise , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Transporte de Elétrons , Fermentação , Oxirredução
16.
Microbiome ; 6(1): 31, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433554

RESUMO

BACKGROUND: Microorganisms serve important functions within numerous eukaryotic host organisms. An understanding of the variation in the plant niche-level microbiome, from rhizosphere soils to plant canopies, is imperative to gain a better understanding of how both the structural and functional processes of microbiomes impact the health of the overall plant holobiome. Using Populus trees as a model ecosystem, we characterized the archaeal/bacterial and fungal microbiome across 30 different tissue-level niches within replicated Populus deltoides and hybrid Populus trichocarpa × deltoides individuals using 16S and ITS2 rRNA gene analyses. RESULTS: Our analyses indicate that archaeal/bacterial and fungal microbiomes varied primarily across broader plant habitat classes (leaves, stems, roots, soils) regardless of plant genotype, except for fungal communities within leaf niches, which were greatly impacted by the host genotype. Differences between tree genotypes are evident in the elevated presence of two potential fungal pathogens, Marssonina brunnea and Septoria sp., on hybrid P. trichocarpa × deltoides trees which may in turn be contributing to divergence in overall microbiome composition. Archaeal/bacterial diversity increased from leaves, to stem, to root, and to soil habitats, whereas fungal diversity was the greatest in stems and soils. CONCLUSIONS: This study provides a holistic understanding of microbiome structure within a bioenergy relevant plant host, one of the most complete niche-level analyses of any plant. As such, it constitutes a detailed atlas or map for further hypothesis testing on the significance of individual microbial taxa within specific niches and habitats of Populus and a baseline for comparisons to other plant species.


Assuntos
Archaea/classificação , Bactérias/classificação , Fungos/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Populus/genética , Análise de Sequência de DNA/métodos , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Fungos/genética , Fungos/isolamento & purificação , Genótipo , Microbiota , Especificidade de Órgãos , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Populus/microbiologia , Rizosfera , Microbiologia do Solo
17.
Microb Ecol ; 75(1): 64-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28721504

RESUMO

Phosphorus (P) is a key biological element with important and unique biogeochemical cycling in natural ecosystems. Anthropogenic phosphorus inputs have been shown to greatly affect natural ecosystems, and this has been shown to be especially true of freshwater systems. While the importance of microbial communities in the P cycle is widely accepted, the role, composition, and relationship to P of these communities in freshwater systems still hold many secrets. Here, we investigated combined bacterial and archaeal communities utilizing 16S ribosomal RNA (rRNA) gene sequencing and computationally predicted functional metagenomes (PFMs) in 25 streams representing a strong P gradient. We discovered that 16S rRNA community structure and PFMs demonstrate a degree of decoupling between structure and function in the system. While we found that total phosphorus (TP) was correlated to the structure and functional capability of bacterial and archaeal communities in the system, turbidity had a stronger, but largely independent, correlation. At TP levels of approximately 55 µg/L, we see sharp differences in the abundance of numerous ecologically important taxa related to vegetation, agriculture, sediment, and other ecosystem inhabitants.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiota , Fósforo/análise , Rios/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ecossistema , Metagenoma , Fósforo/metabolismo , Filogenia , Rios/química
18.
Sci Rep ; 7(1): 5762, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720895

RESUMO

Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor the microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potential.


Assuntos
Microbiota/efeitos dos fármacos , Poluição por Petróleo/análise , Petróleo/toxicidade , Água do Mar/microbiologia , Microbiologia da Água , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Geografia , Mar Mediterrâneo , Metagenômica/métodos , Microbiota/genética , Dinâmica Populacional , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Appl Microbiol Biotechnol ; 101(15): 6205-6216, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28593336

RESUMO

In this study, we evaluated the effects of urea-supplemented diets on the ruminal bacterial and archaeal communities of finishing bulls using sequencing technology. Eighteen bulls were fed a total mixed ration based on maize silage and concentrate (40:60) and randomly allocated to one of three experimental diets: a basal diet with no urea (UC, 0%), a basal diet supplemented with low urea levels (UL, 0.8% dry matter (DM) basis), and a basal diet supplemented with high urea levels (UH, 2% DM basis). All treatments were iso-nitrogenous (14% crude protein, DM basis) and iso-metabolic energetic (ME = 11.3 MJ/kg, DM basis). After a 12-week feeding trial, DNA was isolated from ruminal samples and used for 16S rRNA gene amplicon sequencing. For bacteria, the most abundant phyla were Firmicutes (44.47%) and Bacteroidetes (41.83%), and the dominant genera were Prevotella (13.17%), Succiniclasticum (4.24%), Butyrivibrio (2.36%), and Ruminococcus (1.93%). Urea supplementation had no effect on most phyla (P > 0.05), while there was a decreasing tendency in phylum TM7 with increasing urea levels (P = 0.0914). Compared to UC, UH had lower abundance of genera Butyrivibrio and Coprococcus (P = 0.0092 and P = 0.0222, respectively). For archaea, the most abundant phylum was Euryarchaeota (99.81% of the sequence reads), and the most abundant genus was Methanobrevibacter (90.87% of the sequence reads). UH increased the abundance of genus Methanobrevibacter and Methanobacterium (P = 0.0299 and P = 0.0007, respectively) and decreased the abundance of vadinCA11 (P = 0.0151). These findings suggest that urea-supplemented diets were associated with a shift in archaeal biodiversity and changes in the bacterial community in the rumen.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Dieta , Consórcios Microbianos , Rúmen/microbiologia , Ureia/administração & dosagem , Ração Animal/análise , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos , Suplementos Nutricionais , Fermentação , Firmicutes/genética , Firmicutes/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Nitrogênio/metabolismo , Prevotella/genética , Prevotella/isolamento & purificação , Rúmen/efeitos dos fármacos , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Silagem , Ureia/efeitos adversos , Zea mays
20.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402397

RESUMO

Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa.


Assuntos
Archaea/classificação , Bactérias/classificação , Fungos/classificação , Consórcios Microbianos/fisiologia , Solo/química , Amônia/análise , Archaea/genética , Bactérias/genética , Biodiversidade , Carbono/análise , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Fósforo/análise , Microbiologia do Solo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA