Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
ISME J ; 14(2): 335-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624348

RESUMO

Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms underlying AOA-specific inhibition, we show that complex mixtures of organic compounds, such as yeast extract, were highly inhibitory to all AOA strains but not to the AOB strain. By testing individual organic compounds, we reveal strong inhibitory effects of organic compounds with high metal complexation potentials implying that the inhibitory mechanism for AOA can be explained by the reduced bioavailability of an essential metal. Our results further demonstrate that the inhibitory effect on AOA can be alleviated by copper supplementation, which we observed for pure AOA cultures in a defined medium and for AOA inoculated into nitrifying sludge. Our study offers a novel mechanistic explanation for the relatively low abundance of AOA in most WWTPs and provides a basis for modulating the composition of nitrifying communities in both engineered systems and naturally occurring environments.


Assuntos
Archaea/crescimento & desenvolvimento , Cobre , Nitrificação , Águas Residuárias/microbiologia , Amônia/metabolismo , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Oxirredução , Esgotos/microbiologia , Purificação da Água
2.
Microbiologyopen ; 9(1): e00942, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568679

RESUMO

In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Fertilizantes/análise , Solo/química , Archaea/crescimento & desenvolvimento , China , Compostos de Nitrogênio/análise , Oxirredução , Fósforo/análise , Potássio/análise , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento
3.
Sci Rep ; 9(1): 14883, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619759

RESUMO

Control of common scab disease can be reached by resistant cultivars or suppressive soils. Both mechanisms are likely to translate into particular potato microbiome profiles, but the relative importance of each is not known. Here, microbiomes of bulk and tuberosphere soil and of potato periderm were studied in one resistant and one susceptible cultivar grown in a conducive and a suppressive field. Disease severity was suppressed similarly by both means yet, the copy numbers of txtB gene (coding for a pathogenicity determinant) were similar in both soils but higher in periderms of the susceptible cultivar from conducive soil. Illumina sequencing of 16S rRNA genes for bacteria (completed by 16S rRNA microarray approach) and archaea, and of 18S rRNA genes for micro-eukarytes showed that in bacteria, the more important was the effect of cultivar and diversity decreased from resistant cultivar to bulk soil to susceptible cultivar. The major changes occurred in proportions of Actinobacteria, Chloroflexi, and Proteobacteria. In archaea and micro-eukaryotes, differences were primarily due to the suppressive and conducive soil. The effect of soil suppressiveness × cultivar resistance depended on the microbial community considered, but differed also with respect to soil and plant nutrient contents particularly in N, S and Fe.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Suscetibilidade a Doenças/imunologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/patogenicidade , Archaea/classificação , Archaea/genética , Archaea/patogenicidade , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/patogenicidade , Produtos Agrícolas , Resistência à Doença/efeitos dos fármacos , Células Eucarióticas/metabolismo , Técnicas de Genotipagem , Ferro/metabolismo , Ferro/farmacologia , Microbiota/genética , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Doenças das Plantas/imunologia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/patogenicidade , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/imunologia , Enxofre/metabolismo , Enxofre/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Anaerobe ; 56: 8-16, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633970

RESUMO

To investigate whether there is a nexus between the microbial diversity level (taxonomic, functional and ecological) and the stress tolerance potential of the microbial community, the impact of different ammonium sources was evaluated. Therefore reactors adapted either to the anaerobic digestions of sugar beet silage or maize silage (SBS/MS) were supplemented with animal manure (M) or ammonium carbonate (A). The results showed that increasing concentrations of total ammonium nitrogen (TAN) were not the only reason for community changes: the bacterial community in the reactors given animal manure became more similar over time compared to the reactors given ammonium carbonate. However, this study revealed that a bacterial community with a few dominant members led to a functional more flexible archaeal community (SBS reactors) which was more stress resistant under the experimental conditions. This indicates that a higher functional diversity within a certain part of the community, in the present study the archaeal community, is one important factor for process stability due to a higher tolerance to increasing amounts of process-inhibiting metabolites such as TAN. Compared to this a bacterial community with higher amount of more evenly distributed community members combined with a more rigid archaeal community (MS reactors) showed a lower stress tolerance potential. Moreover it was observed that the disappearance of members of the phylum Cloacimonetes can be used as an indicator for an upcoming process disturbance due to increasing TAN concentrations.


Assuntos
Compostos de Amônio/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis/microbiologia , Biota , Esterco/microbiologia , Estresse Fisiológico , Anaerobiose , Animais , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Meios de Cultura/química , Zea mays/metabolismo
5.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101289

RESUMO

Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.


Assuntos
Dióxido de Carbono/análise , Microbiota , Campos de Petróleo e Gás/microbiologia , Indústria de Petróleo e Gás/métodos , Petróleo/microbiologia , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , Microbiota/genética , Campos de Petróleo e Gás/química
6.
Nat Protoc ; 13(6): 1310-1330, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773905

RESUMO

Traditionally, the description of microorganisms starts with their isolation from an environmental sample. Many environmentally relevant anaerobic microorganisms grow very slowly, and often they rely on syntrophic interactions with other microorganisms. This impedes their isolation and characterization by classic microbiological techniques. We developed and applied an approach for the successive enrichment of syntrophic hydrocarbon-degrading microorganisms from environmental samples. We collected samples from microbial mat-covered hydrothermally heated hydrocarbon-rich sediments of the Guaymas Basin and mixed them with synthetic mineral medium to obtain sediment slurries. Supplementation with defined substrates (i.e., methane or butane), incubation at specific temperatures, and a regular maintenance procedure that included the measurement of metabolic products and stepwise dilutions enabled us to establish highly active, virtually sediment-free enrichment cultures of actively hydrocarbon-degrading communities in a 6-months to several-years' effort. Using methane as sole electron donor shifted the originally highly diverse microbial communities toward defined mixed cultures dominated by syntrophic consortia consisting of anaerobic methane-oxidizing archaea (ANME) and different sulfate-reducing bacteria. Cultivation with butane at 50 °C yielded consortia of archaea belonging to Candidatus Syntrophoarchaeum and Candidatus Desulfofervidus auxilii partner bacteria. This protocol also describes sampling for further molecular characterization of enrichment cultures by fluorescence in situ hybridization (FISH), and transcriptomics and metabolite analyses, which can provide insights into the functioning of hydrocarbon metabolism in archaea and resolve important mechanisms that enable electron transfer to their sulfate-reducing partner bacteria.


Assuntos
Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Microbiologia Ambiental , Hidrocarbonetos/metabolismo , Consórcios Microbianos , Técnicas Microbiológicas/métodos , Anaerobiose , Archaea/crescimento & desenvolvimento , Bactérias Anaeróbias/crescimento & desenvolvimento , Biotransformação , Temperatura
7.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126231

RESUMO

In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation.


Assuntos
Irrigação Agrícola/métodos , Archaea/genética , Bactérias/genética , Dióxido de Carbono/metabolismo , Oryza/crescimento & desenvolvimento , Fósforo/análise , Solo/química , Archaea/crescimento & desenvolvimento , Processos Autotróficos/fisiologia , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
8.
Appl Microbiol Biotechnol ; 101(16): 6517-6529, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597336

RESUMO

Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L-1) levels of hydrogen sulfide and high numbers (107 mL-1) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Incrustação Biológica , Metais/metabolismo , Indústria de Petróleo e Gás , Petróleo/microbiologia , Microbiologia da Água , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Corrosão , Sulfeto de Hidrogênio/análise , Consórcios Microbianos , Indústria de Petróleo e Gás/economia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
9.
Sci Rep ; 7: 43814, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266642

RESUMO

The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Lagos/microbiologia , Enxofre/metabolismo , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/genética , Compostos Férricos/metabolismo , Sedimentos Geológicos/química , Lagos/química , Oxirredução , Fósforo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Estações do Ano , Óxidos de Enxofre/metabolismo
10.
Microb Ecol ; 72(3): 704-16, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27401822

RESUMO

Studies of the altitudinal distributions of soil microorganisms are rare or have led to contradictory results. Therefore, we studied archaeal and bacterial abundance and microbial-mediated activities across an altitudinal gradient (2700 to 3500 m) on the southwestern slope of Mt. Schrankogel (Central Alps, Austria). Sampling sites distributed over the alpine (2700 to 2900 m), the alpine-nival (3000 to 3100 m), and the nival altitudinal belts (3200 to 3500 m), which are populated by characteristic plant assemblages. Bacterial and archaeal abundances were measured via quantitative real-time PCR (qPCR). Moreover, microbial biomass C, microbial activity (dehydrogenase), and enzymes involved in carbon (CM-cellulase), nitrogen (protease), phosphorus (alkaline phosphatase), and sulfur (arylsulfatase) cycling were determined. Abundances, microbial biomass C, and activities almost linearly decreased along the gradient. Archaeal abundance experienced a sharper decrease, thus pointing to pronounced sensitivity toward environmental harshness. Additionally, abundance and activities were significantly higher in soils of the alpine belt compared with those of the nival belt, whereas the alpine-nival ecotone represented a transitional area with intermediate values, thus highlighting the importance of vegetation. Archaeal abundance along the gradient was significantly related to soil temperature only, whereas bacterial abundance was significantly related to temperature and dissolved organic carbon (DOC). Soil carbon and nitrogen concentrations explained most of the variance in enzyme activities involved in the cycling of C, N, P, and S. Increasing temperature could therefore increase the abundances and activities of microorganisms either directly or indirectly via expansion of alpine vegetation to higher altitudes and increased plant cover.


Assuntos
Biodiversidade , Alimentos , Células Procarióticas/classificação , Microbiologia do Solo , Solo/química , Temperatura , Tundra , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Áustria , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Ciclo do Carbono , DNA Arqueal , DNA Bacteriano , Fenômenos Ecológicos e Ambientais , Genes Arqueais , Genes Bacterianos , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Plantas/microbiologia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Enxofre/metabolismo
11.
World J Microbiol Biotechnol ; 32(8): 135, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27344438

RESUMO

The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.


Assuntos
Archaea/crescimento & desenvolvimento , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Adaptação Fisiológica , Archaea/metabolismo , Biodegradação Ambiental , Poluição Ambiental , Salinidade
12.
Appl Microbiol Biotechnol ; 100(10): 4685-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26810199

RESUMO

The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of ß-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities.


Assuntos
Archaea/crescimento & desenvolvimento , Biomassa , Sedimentos Geológicos/microbiologia , Archaea/classificação , China , DNA Arqueal/isolamento & purificação , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Methanobacteriaceae/classificação , Methanobacteriaceae/crescimento & desenvolvimento , Methanobrevibacter/classificação , Methanobrevibacter/crescimento & desenvolvimento , Methanosarcinales/classificação , Methanosarcinales/crescimento & desenvolvimento , Methanospirillum/classificação , Methanospirillum/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Filogenia , RNA Ribossômico 16S/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA , Microbiologia da Água
13.
Appl Microbiol Biotechnol ; 99(23): 10355-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272096

RESUMO

The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Metano/metabolismo , Águas Residuárias/microbiologia , Anaerobiose , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Fatores de Tempo , Águas Residuárias/química
14.
Appl Microbiol Biotechnol ; 99(15): 6551-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25895095

RESUMO

Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biomassa
15.
FEMS Microbiol Ecol ; 91(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25764563

RESUMO

Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil.


Assuntos
Amônia/metabolismo , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Aminoácidos/farmacologia , Archaea/genética , Ácido Glutâmico/farmacologia , Ciclo do Nitrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
16.
Acta Microbiol Immunol Hung ; 60(3): 289-301, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24060553

RESUMO

The effect of several easily degradable substrates, such as protein, starch and sunflower oil was investigated on the bacterial community of a laboratory-scale biogas model system. Besides measuring gas yield, Denaturing Gradient Gel Electrophoresis (DGGE), Phospholipids Fatty Acid Analysis (PLFA) for Bacteria and T-RFLP analysis of the mcrA gene for Archaea were used. The community of the examined biogas reactors adapted to the new substrates through a robust physiological reaction followed by moderate community abundance shifts. Gas yield data clearly demonstrated the physiological adaptation to substrate shifts. Statistical analysis of DNA and chemotaxonomic biomarkers revealed community abundance changes. Sequences gained from DGGE bands showed the dominance of the phyla Bacteroidetes and the presence of Firmicutes (Clostridia) and Thermotogae. This was supported by the detection of large amounts of branched 15-carbon non-hydroxy fatty acids in PLFA profiles, as common PLFA markers of the Bacteroidetes group. Minor abundance ratios changes were observed in the case of Archaea in accordance with changes of the fed substrates.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Esgotos/microbiologia , Adaptação Fisiológica , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/metabolismo , Biocombustíveis , Reatores Biológicos , Análise por Conglomerados , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Polimorfismo de Fragmento de Restrição , Proteínas/metabolismo , RNA Ribossômico 16S/genética , Esgotos/química , Amido/metabolismo
17.
Extremophiles ; 16(5): 751-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22868892

RESUMO

Hypersaline soil and pond water samples were mixed with 3 % crude oil, some samples were autoclaved to serve as sterile controls; experimental samples were not sterilized. After 6-week incubation at 40 °C under light/dark cycles, the soil microflora consumed 66 %, and after 4 weeks the pond water microflora consumed 63 % of the crude oil. Soil samples treated with 3 % casaminoacids lost 89 % of their oil after 6 weeks and water samples lost 86 % after 4 weeks. Samples treated with casaminoacids and antibiotics that selectively inhibited bacteria, lost even more oil, up to 94 %. Soil-water mixtures incubated under continuous illumination lost double as much more oil than samples incubated in the dark. The soil-water mixture at time zero contained 1.3 × 10(4) CFU g(-1) of hydrocarbon-utilizing microorganisms which were affiliated to Halomonas aquamarina, Exiguobacterium aurantiacum, Haloferax sp., Salinococcus sp., Marinococcus sp. and Halomonas sp. After 6-week incubation with oil, these numbers were 8.7 × 10(7) CFU g(-1) and the Haloferax sp. proportion in the total microflora increased from 20 to 93 %. Experiments using the individual cultures and three other haloarchaea isolated earlier from the same site confirmed that casaminoacids and light enhanced their oil consumption potential in batch cultures.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Poluição por Petróleo , Petróleo/metabolismo , Petróleo/microbiologia , Microbiologia do Solo , Biodegradação Ambiental , Nitrogênio/metabolismo , Salinidade , Microbiologia da Água
18.
Huan Jing Ke Xue ; 33(2): 625-32, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22509607

RESUMO

Denaturing gradient gel electrophoresis (DGGE) method and principal component analysis (PCA) method were used to analyze the structures of microorganism population in injection wells and production wells of a post-polymer-flooding oil reservoir in Daqing oil field. The results showed that the dominant species in injection wellhead were aerobic bacteria Pseudomonas and Acinenobacter. Facultative anaerobic bacteria Enterbacter was the dominant bacteria in near area of injection wells. Bacteria detected in production wells included Thauera, Clostridia, Pseudomonas, Petrobacter and some uncultured bacteria. Methanosaeta turned out to be the only archaea detected in injection wells, which was an aceticlastic methane-producing archaeon. Archaea detected in production wells consisted of Methanomicrobium, Methanospirillum and Methanobacterium. In general, aerobic bacteria, facultative anaerobe, and strictly anaerobic bacteria distributed successively from injection wells to production wells in this block. The dominant populations of archaea were different between injection wells and production wells, while were influenced by different environments and microbial metabolism products.


Assuntos
Archaea/classificação , Bactérias/classificação , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Acinetobacter/isolamento & purificação , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , China , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante/métodos , Filogenia , Polímeros , Análise de Componente Principal , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Poços de Água/microbiologia
19.
PLoS One ; 7(3): e33535, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432032

RESUMO

The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Temperatura , Microbiologia da Água , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , China , Análise por Conglomerados , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Fatores de Tempo
20.
Appl Environ Microbiol ; 78(7): 2082-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267668

RESUMO

The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N(2) gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed.


Assuntos
Biodegradação Ambiental , Ecossistema , Sedimentos Geológicos/microbiologia , Lactatos/metabolismo , Urânio/metabolismo , Veillonellaceae/crescimento & desenvolvimento , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Reatores Biológicos , Cromo/metabolismo , Meios de Cultura , DNA Arqueal/análise , DNA Arqueal/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Água Subterrânea/microbiologia , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Veillonellaceae/classificação , Veillonellaceae/genética , Veillonellaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA