Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Microbiol ; 22(3): 1066-1088, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31600863

RESUMO

Soil microorganisms play a critical role in the biosphere, and the influence of cropland fertilization on the evolution of soil as a living entity is being actively documented. In this study, we used a shotgun metagenomics approach to globally expose the effects of 50-year N and P fertilization of wheat on soil microbial community structure and function, and their potential involvement in overall N cycling. Nitrogen (N) fertilization increased alpha diversity in archaea and fungi while reducing it in bacteria. Beta diversity of archaea, bacteria and fungi, as well as soil function, were also mainly driven by N fertilization. The abundance of archaea was negatively impacted by N fertilization while bacterial and fungal abundance was increased. The responses of N metabolism-related genes to fertilization differed in archaea, bacteria and fungi. All archaeal N metabolic processes were decreased by N fertilization, while denitrification, assimilatory nitrate reduction and organic-N metabolism were highly increased by N fertilization in bacteria. Nitrate assimilation was the main contribution of fungi to N cycling. Thaumarchaeota and Halobacteria in archaea; Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria in bacteria; and Sordariomycetes in fungi participated dominantly and widely in soil N metabolic processes.


Assuntos
Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Microbiologia do Solo , Triticum/microbiologia , Archaea/efeitos dos fármacos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biodiversidade , Fertilizantes , Fungos/efeitos dos fármacos , Fungos/fisiologia , Estudos Longitudinais , Solo/química , Triticum/crescimento & desenvolvimento
2.
Microb Ecol ; 79(2): 357-366, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31342100

RESUMO

Rice root-associated microbial community play an important role in plant nutrient acquisition, biomass production, and stress tolerance. Herein, root-associated community assembly was investigated under different phosphate input levels in phosphorus (P)-deficient paddy soil. Rice was grown in a long-term P-depleted paddy soil with 0 (P0), 50 (PL), or 200 (PH) mg P2O5 kg-1 application. DNA from root endophytes was isolated after 46 days, and PCR amplicons from archaea, bacteria, and fungi were sequenced by an Illumina Miseq PE300 platform, respectively. P application had no significant effect on rice root endophytic archaea, which were dominated by ammonia-oxidizing Candidatus Nitrososphaera. By contrast, rice root endophytic community structure of the bacteria and fungi was affected by soil P. Low P input increased endophytic bacterial diversity, whereas high P input increased rhizosphere fungi diversity. Bacillus and Pleosporales, associated with phosphate solubilization and P uptake, dominated in P0 and PH treatments, and Pseudomonas were more abundant in the PL treatment than in the P0 and PH treatments. Co-occurrence network analysis revealed a close interaction between endophytic bacteria and fungi. Soil P application affected both the rice root endosphere and soil rhizosphere microbial community and interaction between rice root endophytic bacteria, and fungi, especially species related to P cycling.


Assuntos
Microbiota/efeitos dos fármacos , Oryza/microbiologia , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Archaea/efeitos dos fármacos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos , Fungos/fisiologia , Fósforo/administração & dosagem , Rizosfera
3.
Res Vet Sci ; 124: 129-136, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30897395

RESUMO

The interest in antimicrobial compounds as feed additives is currently increasing. Among different options, tannins seem to have several beneficial effects when employed in animals diet. The present study aimed at investigating the influence on caecal microbial communities of the supplementation of a chestnut and quebracho tannins mix in meat rabbit's diet, also considering animals live performances. Four groups of rabbits were fed with a different diet: a control diet (C); a control diet with coccidiostat (CC), and two experimental diets with 0.3% (T0.3) and 0.6% (T0.6) chestnut and quebracho tannins mix. For microbial analysis, culture-dependent and culture-independent methods were employed. Live performances were not significantly affected by tannins mix supplementations, as well as culturable microbial loads of E. coli, Enterobacteriaceae, Bacteroides spp. and Bifidobacterium spp. C. perfringens was always under the detection limit. A consistent result was obtained by qPCR. As for PCR-DGGE analysis, the Richness and evenness (Shannon-Weiner index) of bacterial communities in caecum resulted significantly higher in control samples (C and CC) than in those from rabbit fed with tannin-containing diets. Sequencing analysis revealed that the phylum Firmicutes was less represented in samples from control groups. As for the methanogen archaeal DGGE, no significant differences were found in richness and diversity among different groups, all dominated by Methanobrevibacter spp.. This work highlights the potential antimicrobial effect of chestnut and quebracho tannins mix in an in vivo system revealed by molecular analysis.


Assuntos
Anacardiaceae/química , Ceco/microbiologia , Fagaceae/química , Coelhos/crescimento & desenvolvimento , Coelhos/microbiologia , Taninos/metabolismo , Ração Animal/análise , Animais , Archaea/efeitos dos fármacos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/fisiologia , Distribuição Aleatória , Taninos/administração & dosagem
4.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737352

RESUMO

Climate change is predicted to alter precipitation and drought patterns, which has become a global concern as evidence accumulates that it will affect ecosystem services. Disentangling the ability of soil multifunctionality to withstand this stress (multifunctionality resistance) is a crucial topic for assessing the stability and adaptability of agroecosystems. In this study, we explored the effects of nutrient addition on multifunctionality resistance to drying-wetting cycles and evaluated the importance of microbial functional capacity (characterized by the abundances of genes involved in carbon, nitrogen and phosphorus cycles) for this resistance. The multifunctionality of soils treated with nitrogen (N) and straw showed a higher resistance to drying-wetting cycles than did nonamended soils. Microbial functional capacity displayed a positive linear relationship with multifunctionality resistance. Random forest analysis showed that the abundances of the archeal amoA (associated with nitrification) and nosZ and narG (denitrification) genes were major predictors of multifunctionality resistance in soils without straw addition. In contrast, major predictors of multifunctionality resistance in straw amended soils were the abundances of the GH51 (xylan degradation) and fungcbhIF (cellulose degradation) genes. Structural equation modeling further demonstrated the large direct contribution of carbon (C) and N cycling-related gene abundances to multifunctionality resistance. The modeling further elucidated the positive effects of microbial functional capacity on this resistance, which was mediated potentially by a high soil fungus/bacterium ratio, dissolved organic C content, and low pH. The present work suggests that nutrient management of agroecosystems can buffer negative impacts on ecosystem functioning caused by a climate change-associated increase in drying-wetting cycles via enriching functional capacity of microbial communities.IMPORTANCE Current climate trends indicate an increasing frequency of drying-wetting cycles. Such cycles are severe environmental perturbations and have received an enormous amount of attention. Prediction of ecosystem's stability and adaptability requires a better mechanistic understanding of the responses of microbially mediated C and nutrient cycling processes to external disturbance. Assessment of this stability and adaptability further need to disentangle the relationships between functional capacity of soil microbial communities and the resistance of multifunctionality. Study of the physiological responses and community reorganization of soil microbes in response to stresses requires large investments of resources that vary with the management history of the system. Our study provides evidence that nutrient managements on agroecosystems can be expected to buffer the impacts of progressive climate change on ecosystem functioning by enhancing the functional capacity of soil microbial communities, which can serve as a basis for field studies.


Assuntos
Mudança Climática , Secas , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Carbono , China , Desnitrificação , Ecossistema , Fungos/genética , Fungos/fisiologia , Genes Bacterianos/genética , Microbiota , Nitrificação , Fósforo
5.
Sci Total Environ ; 658: 723-731, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583167

RESUMO

Archaea play crucial roles in geochemical cycles and influence the emission of greenhouse gases in acidic soils. However, little is known about the distribution pattern of total archaeal diversity and community composition with increasing elevation, especially in acidic agricultural ecosystems. Terraces, characterized by vertical climate changes and unique hydrological properties, are "natural experiments" to explore the spatial distribution of microorganisms along elevation in paddy soils. Here we investigated the diversity and structure of soil archaeal communities in nine increasingly elevated acidic paddy soils of the Yunhe terrace, China. Archaeal communities were dominated by Methanomicrobia of Euryarchaeota (38.5%), Group 1.1a-associated cluster (SAGSCG-1) of Thaumarchaeota (22.0%) and Subgroup-6 (previously described as crenarchaeotal group 1.3b) of Bathyarchaeota (17.8%). The archaeal phylotype richness decreased with increasing elevation. Both the species richness and phylogenetic diversity of the archaeal communities were significantly negatively correlated with soil available phosphorus (AP) content according to linear regression analyses. The archaeal communities differed greatly between soils of increasing elevation, and were roughly clustered into three groups, mostly in relation to AP contents. A variation partitioning analysis further confirmed that edaphic factors including the content of AP (17.1%), nitrate (7.83%), soil organic carbon (4.69%), dissolved organic carbon (4.22%) and soil pH (4.07%) shaped the archaeal community. The variation of soil properties were probably induced by elevation. The co-occurrence network indicated a modular structure of the archaeal community. Overall, our results emphasized that soil AP content was the best predictor of archaeal diversity and community structure, and the impacts of elevation on soil archaeal communities were not diminished by long-term rice cultivation, although minor compared with the effects of soil properties.


Assuntos
Archaea/fisiologia , Microbiota , Fósforo/análise , Microbiologia do Solo , Solo/química , Altitude , Archaea/química , China , Oryza/crescimento & desenvolvimento , Análise Espacial
6.
Bioelectrochemistry ; 125: 105-115, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366231

RESUMO

A new approach to microbial electrosynthesis is proposed, aimed at producing whole biomass from N2 and inorganic carbon, by electrostimulation of complex microbial communities. On a carbon-based conductor under constant polarization (-0.7 V vs SHE), an electroactive biofilm was enriched with autotrophic nitrogen fixing microorganims and led to biomass synthesis at higher amounts (up to 18 fold), as compared to controls kept at open circuit (OC). After 110 days, the electron transfer had increased by 30-fold, as compared to abiotic conditions. Metagenomics evidenced Nif genes associated with autotrophs (both Archaea and Bacteria) only in polarized biofilms, but not in OC. With this first proof of concept experiment, we propose to call this promising field 'bioelectrochemical nitrogen fixation' (e-BNF): a possible way to 'power' biological nitrogen fixation, organic carbon storage and soil fertility against desertification, and possibly a new tool to study the development of early prokaryotic life in extreme environments.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Carbono/metabolismo , Técnicas Eletroquímicas/instrumentação , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/fisiologia , Archaea/genética , Archaea/fisiologia , Processos Autotróficos , Biomassa , Eletrodos , Desenho de Equipamento , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Filogenia
7.
Mar Pollut Bull ; 135: 801-807, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301100

RESUMO

In this study, the bacterial and archaeal communities along with their functions of activated sludge from three wastewater treatment plants were investigated by Illumina MiSeq Platform. The treatment processes were modified A/A/O, DE oxidation ditch and pre-anaerobic carrousel oxidation ditch, respectively. The taxonomic analyses showed that Proteobacteria was the predominant bacterial phylum, and Nitrosospira was the dominant nitrification genus. Candidatus Accumulibacter was abundant in DE oxidation ditch process, and the main archaea communities were methanosaeta-like species which had the capability to anaerobic ammonia oxidation. The results illustrated that anaerobic ammonium oxidation played an important role in the nitrogen metabolism and there might be other unknown phosphate-accumulating organisms (PAOs) performing phosphorus removal in activated sludge. The predicted function analyses indicated that both bacteria and archaea were involved in nitrification, denitrification, ammonification and phosphorus removal processes, and their relative abundance varied metabolic modules differed from each other.


Assuntos
Archaea/fisiologia , Consórcios Microbianos/fisiologia , Proteobactérias/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , China , Desnitrificação , Nitrificação , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteobactérias/metabolismo
8.
Nat Ecol Evol ; 2(3): 499-509, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358607

RESUMO

Phosphorus is a scarce nutrient in many tropical ecosystems, yet how soil microbial communities cope with growth-limiting phosphorus deficiency at the gene and protein levels remains unknown. Here, we report a metagenomic and metaproteomic comparison of microbial communities in phosphorus-deficient and phosphorus-rich soils in a 17-year fertilization experiment in a tropical forest. The large-scale proteogenomics analyses provided extensive coverage of many microbial functions and taxa in the complex soil communities. A greater than fourfold increase in the gene abundance of 3-phytase was the strongest response of soil communities to phosphorus deficiency. Phytase catalyses the release of phosphate from phytate, the most recalcitrant phosphorus-containing compound in soil organic matter. Genes and proteins for the degradation of phosphorus-containing nucleic acids and phospholipids, as well as the decomposition of labile carbon and nitrogen, were also enhanced in the phosphorus-deficient soils. In contrast, microbial communities in the phosphorus-rich soils showed increased gene abundances for the degradation of recalcitrant aromatic compounds, transformation of nitrogenous compounds and assimilation of sulfur. Overall, these results demonstrate the adaptive allocation of genes and proteins in soil microbial communities in response to shifting nutrient constraints.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Fertilizantes/análise , Metagenoma , Fósforo/administração & dosagem , Microbiologia do Solo , Solo/química , Archaea/genética , Fenômenos Fisiológicos Bacterianos/genética , Florestas , Panamá , Proteogenômica , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 112(35): 10967-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283343

RESUMO

Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.


Assuntos
Ecossistema , Poaceae/fisiologia , Microbiologia do Solo , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo
10.
PLoS One ; 10(8): e0133763, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241328

RESUMO

To find environmental variables (EVs) shaping the ecological niche of the archaeal phylum Thaumarchaeota in terrestrial environments, we determined the abundance of Thaumarchaeota in various soil samples using real-time PCR targeting thaumarchaeotal 16S rRNA gene sequences. We employed our previously developed primer, THAUM-494, which had greater coverage for Thaumarchaeota and lower tolerance to nonthaumarchaeotal taxa than previous Thaumarchaeota-directed primers. The relative abundance estimates (RVs) of Thaumarchaeota (RTHAUM), Archaea (RARCH), and Bacteria (RBACT) were subjected to a series of statistical analyses. Redundancy analysis (RDA) showed a significant (p < 0.05) canonical relationship between RVs and EVs. Negative causal relationships between RTHAUM and nutrient level-related EVs were observed in an RDA biplot. These negative relationships were further confirmed by correlation and regression analyses. Total nitrogen content (TN) appeared to be the EV that affected RTHAUM most strongly, and total carbon content (TC), which reflected the content of organic matter (OM), appeared to be the EV that affected it least. However, in the path analysis, a path model indicated that TN might be a mediator EV that could be controlled directly by the OM. Additionally, another path model implied that water content (WC) might also indirectly affect RTHAUM by controlling ammonium nitrogen (NH4+-N) level through ammonification. Thus, although most directly affected by NH4+-N, RTHAUM could be ultimately determined by OM content, suggesting that Thaumarchaeota could prefer low-OM or low-WC conditions, because either of these EVs could subsequently result in low levels of NH4+-N in soil.


Assuntos
Archaea/fisiologia , Ecossistema , Microbiologia do Solo , Amônia/análise , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Carbono/análise , Contagem de Colônia Microbiana , Primers do DNA/genética , Metabolismo Energético , Dosagem de Genes , Substâncias Húmicas/análise , Nitrogênio/análise , Fósforo/análise , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia , Solo/química , Enxofre/análise , Temperatura , Água
11.
Arch Environ Contam Toxicol ; 69(1): 20-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25860433

RESUMO

Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.


Assuntos
Amônia/metabolismo , Mineração , Microbiologia do Solo , Amônia/análise , Archaea/classificação , Archaea/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Monitoramento Ambiental , Variação Genética , Ferro , Oxirredutases/metabolismo , Fósforo/análise , Filogenia , Solo/química
12.
Can J Microbiol ; 60(10): 649-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25264709

RESUMO

Flaxseed is a rich source of α-linolenic acid, an essential ω-3 fatty acid reported to have beneficial health effects in humans. Feeding swine a diet supplemented with flaxseed has been found to enrich pork products with ω-3 fatty acids. However, the effect of flaxseed supplementation on the swine gut microbiota has not been assessed to date. The purpose of this study was to investigate if extruded flaxseed has any impact on the bacterial and archaeal microbiota in the feces of growing-finishing pigs over a 51-day period, using denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Bacterial DGGE profile analysis revealed major temporal shifts in the bacterial microbiota with only minor ones related to diet. The archaeal microbiota was significantly less diverse than that of Bacteria. The majority of bacterial DGGE bands sequenced belonged to the Firmicutes phylum while the archaeal DGGE bands were found to consist of only 2 species, Methanobrevibacter smithii and Methanosphaera stadtmanae. The abundance of Bacteroidetes decreased significantly from day 0 to day 21 in all diet groups while the abundance of Firmicutes was relatively stable across all diet cohorts and sampling times. There was also no significant correlation between pig mass and the ratio of Firmicutes to Bacteroidetes. While the addition of extruded flaxseed to the feed of growing-finishing pigs was beneficial for improving ω-3 fatty acid content of pork, it had no detectable impact on the fecal bacterial and archaeal microbiota, suggesting that extruded flaxseed may be used to improve meat quality without adverse effect on the swine gut microbiota or animal performance.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Dieta/veterinária , Suplementos Nutricionais , Linho/metabolismo , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ácidos Graxos Ômega-3/metabolismo , Fezes/microbiologia , Linho/química , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Distribuição Aleatória , Suínos
13.
Int J Mol Sci ; 15(6): 9907-23, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24897025

RESUMO

The knowledge about microorganisms-activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional-with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.


Assuntos
Humulus/fisiologia , Agricultura Orgânica/métodos , Microbiologia do Solo , Amônia/metabolismo , Archaea/fisiologia , Fertilizantes/análise , Solo
14.
Microb Ecol ; 67(3): 501-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24402364

RESUMO

The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (α [αG] and ß glucosidases [ßG], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (αG, ßG, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.


Assuntos
Archaea/fisiologia , Processos Autotróficos , Bactérias/metabolismo , Ciclo do Carbono , Processos Heterotróficos , Fósforo/metabolismo , Biomassa , Meio Ambiente , Itália , Mar Mediterrâneo , Estações do Ano
15.
Mikrobiologiia ; 83(3): 255-70, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25844436

RESUMO

The deep continental biosphere consists of geologically isolated ecosystems differing in their physicochemical, geological, and trophic parameters. Most of the deep ecosystems exist at elevated temperatures (50-120 degrees C), which favor the development of thermophilic microorganisms. In many cases, indigenous nature of subsurface microorganisms is questionable due to problems of collecting representative and non-contaminated samples. In spite of the numerous studies on the deep biosphere microbial communities, the number of cultivated thermophiles isolated from subsurface environments not associated with petroleum deposits does not exceed 30 species. More than half of the thermophilic species isolated from deep subsurface belong to the Firmicutes. Majority of the underground thermophiles are subsurface strict or facultative anaerobes, with capacity for sulfate and iron reduction are notably widespread. Most thermophilic subsurface microorganisms are organotrophs, although chemolithoautotrophic thermophiles also have been reported. This review deals with the phylogenetic diversity and physiological properties of the cultivated thermophilic prokaryotes isolated from various deep subterranean habitats.


Assuntos
Archaea/fisiologia , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Archaea/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Ecossistema , Temperatura Alta , Mineração , Petróleo , Filogenia , Células Procarióticas , Microbiologia do Solo
16.
Animal ; 7(12): 1950-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24237673

RESUMO

Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rumen fermentation, protozoal counts and archaeal abundance, as well as their diversity and functional organization. KO contains similar amounts of C12:0 as CO (420 and 458 g/kg FA, respectively), but has a higher proportion of C14:0 (464 v. 205 g/kg FA, respectively). Treatments contained 35 g supplemental fat per kg DM: a control diet with tallow (T); a diet with supplemental CO; and a diet with supplemental KO. A 4th treatment consisted of a diet with similar amounts of MCFA (i.e. C10:0+C12:0+C14:0) from CO and KO. To ensure isolipidic diets, extra tallow was supplied in the latter treatment (KO+T). Eight fistulated bulls (two bulls per treatment), fed a total mixed ration predominantly based on cassava chips, rice straw, tomato pomace, rice bran and soybean meal (1.5% of BW), were used. Both KO and CO increased the rumen volatile fatty acids, in particular propionate and decreased acetate proportions. Protozoal numbers were reduced through the supplementation of an MCFA source (CO, KO and KO+T), with the strongest reduction by KO. Quantitative real-time polymerase chain reaction assays based on archaeal primers showed a decrease in abundance of Archaea when supplementing with KO and KO+T compared with T and CO. The denaturing gradient gel electrophoresis profiles of the rumen archaeal population did not result in a grouping of treatments. Richness indices were calculated from the number of DGGE bands, whereas community organization was assessed from the Pareto-Lorenz evenness curves on the basis of DGGE band intensities. KO supplementation (KO and KO+T treatments) increased richness and evenness within the archaeal community. Further research including methane measurements and productive animals should elucidate whether KO could be used as a dietary methane mitigation strategy.


Assuntos
Archaea/fisiologia , Bovinos/fisiologia , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos/farmacologia , Óleos de Plantas/farmacologia , Rúmen/efeitos dos fármacos , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/microbiologia , Óleo de Coco , Dieta/veterinária , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/análise , Suplementos Nutricionais , Ácidos Graxos/química , Fermentação , Masculino , Óleos de Plantas/química , Rúmen/microbiologia , Rúmen/parasitologia
17.
ISME J ; 7(8): 1595-608, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23446836

RESUMO

Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support alternative metabolic pathways than syntrophic anaerobic oxidation of methane.


Assuntos
Archaea/fisiologia , Biodiversidade , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , California , Sedimentos Geológicos/química , Hibridização in Situ Fluorescente , Oceanos e Mares , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sulfatos/metabolismo
18.
J Environ Manage ; 103: 74-82, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22466006

RESUMO

The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C.


Assuntos
Archaea/metabolismo , Óleos de Plantas , Anaerobiose , Archaea/fisiologia , Biomassa , Methanosarcinales/metabolismo , Methanosarcinales/fisiologia , Óleo de Palmeira , Reação em Cadeia da Polimerase , Esgotos/microbiologia , Temperatura , Eliminação de Resíduos Líquidos
19.
Trop Anim Health Prod ; 44(4): 697-706, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21870063

RESUMO

Reducing methane emission from ruminant animals has implications not only for global environmental protection but also for efficient animal production. Tea saponins (TS) extracted from seeds, leaves or roots of tea plant are pentacyclic triterpenes. They have a lasting antiprotozoal effect, but little effect on the methanogen population in sheep. There was no significant correlation between the protozoa counts and methanogens. The TS decreased methanogen activity. It seems that TS influenced the activity of the methanogens indirectly via the depressed ciliate protozoal population. The TS addition decreased fungal population in the medium containing rumen liquor in in vitro fermentation, but no such effect was observed in the rumen liquor of sheep fed TS. Tea saponins had a minor effect on the pattern of rumen fermentation and hence on nutrient digestion. When added at 3 g/day in diets, TS could improve daily weight gain and feed efficiency in goats. No positive associative effect existed between TS and disodium fumarate or soybean oil on methane suppression. Inclusion of TS in diets may be an effective way for improving feed efficiency in ruminants.


Assuntos
Camellia sinensis/metabolismo , Bovinos/fisiologia , Conteúdo Gastrointestinal/microbiologia , Cabras/fisiologia , Rúmen/metabolismo , Rúmen/microbiologia , Saponinas/farmacologia , Ovinos/fisiologia , Criação de Animais Domésticos , Animais , Archaea/efeitos dos fármacos , Archaea/fisiologia , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Camellia sinensis/química , Bovinos/crescimento & desenvolvimento , Bovinos/microbiologia , Eucariotos/efeitos dos fármacos , Eucariotos/fisiologia , Fermentação , Conteúdo Gastrointestinal/efeitos dos fármacos , Cabras/crescimento & desenvolvimento , Cabras/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rúmen/efeitos dos fármacos , Saponinas/química , Ovinos/crescimento & desenvolvimento , Ovinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA