Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 245: 116158, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643703

RESUMO

Areca nuts have been used as a traditional Chinese medicine (TCM) for thousands of years. Recent studies have shown that it exhibits good pharmacological activity and toxicity. In this study, the pharmacokinetics of five major components of areca nut extract in rats were investigated using a highly sensitive ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method. Arecoline, arecaidine, guvacoline, guvacine, and catechin were separated and quantified accurately using gradient elution with mobile phases of (A) water containing 0.1 % formic acid-10 mM ammonium formate, and (B) methanol. The constituents were detected under a timing switch between the positive and negative ion modes using multiple reaction monitoring (MRM). Each calibration curve had a high R2 value of >0.99. The method accuracies ranged -7.09-11.05 % and precision values were less than 14.36 %. The recovery, matrix effect, selectivity, stability, and carry-over of the method were in accordance with the relevant requirements. It was successfully applied for the investigation of the pharmacokinetics of these five constituents after oral administration of areca nut extract. Pharmacokinetic results indirectly indicated a metabolic relationship between the four areca nut alkaloids in rats. For further clarification of its pharmacodynamic basis, this study provided a theoretical reference.


Assuntos
Areca , Nozes , Extratos Vegetais , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Areca/química , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Masculino , Nozes/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/química , Extratos Vegetais/sangue , Arecolina/farmacocinética , Arecolina/sangue , Arecolina/análogos & derivados , Reprodutibilidade dos Testes , Administração Oral , Catequina/farmacocinética , Catequina/sangue , Catequina/química , Espectrometria de Massa com Cromatografia Líquida
2.
J Ethnopharmacol ; 326: 117929, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373661

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ya-Samarn-Phlae (YaSP) has traditionally been widely used in southern Thailand for treating chronic and infected wounds, including diabetic foot ulcers. However, there are only a limited number of clinical studies supporting the use of this polyherbal formulation. Therefore, the present work aims to provide clinical evidence to support the application of YaSP, prepared according to a standardized traditional procedure (T-YaSP). Additionally, its potential chemical markers and wound healing-related biological activities were examined. MATERIALS AND METHODS: The in vitro wound healing-related biological activities of YaSP ethanol extract and T-YaSP, including antibacterial activity against Staphylococcus epidermidis, inhibition and eradication of staphylococcal biofilm, anti-inflammatory effects, and enhancement of human dermal fibroblast migration in scratch wounds, were examined using well-established protocols. The chemical profiles of the ethanol extract of YaSP and T-YaSP were compared, and with promising chemical markers, arecoline, alpha-mangostin, and curcumin were selected and quantified using the HPLC method. A prospective, multicenter, randomized, controlled, parallel-group study was conducted over 12 weeks to evaluate the efficacy of the YaSP solution as an adjunct therapy, combined with standard wound care, for diabetic ulcers compared to standard treatment. RESULTS: The YaSP extract reduces NO production and can scavenge NO radicals in LPS-induced RAW 264.7 macrophage cells. Additionally, in a scratch assay, this extract and one of its herbal components, Curcuma longa, enhance the migration of human dermal fibroblasts. T-YaSP, containing 2.412 ± 0.002 mg/g of arecoline, 2.399 ± 0.005 mg/g of curcumin, and 0.017 ± 0.000 mg/g of α-mangostin, has shown the ability to inhibit the development and eradicate the mature biofilm of S. epidermidis. The use of T-YaSP as an adjunct therapy led to a significantly higher proportion of patients achieving healing within six weeks compared to the standard treatment group (36%/9 patients vs. 4%/1 patient; p = 0.013). After 12 weeks, 19 out of 25 patients in the T-YaSP group experienced complete healing, whereas only four patients in the standard treatment group achieved complete wound healing (76% in the T-YaSP group vs. 16% in the control group; p < 0.001). CONCLUSION: The results presented here represent the first randomized controlled trial to demonstrate the effectiveness of the traditional polyherbal solution, T-YaSP, which exhibits a wide range of wound healing-related activities. Utilizing T-YaSP as an adjunctive treatment resulted in a significant improvement in the number of type 2 diabetic patients achieving complete healing. However, to explore and utilize YaSP further, conducting a double-blind, randomized controlled trial with a larger population is necessary.


Assuntos
Curcumina , Diabetes Mellitus , Pé Diabético , Humanos , Arecolina/farmacologia , Estudos Prospectivos , Curcumina/farmacologia , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pé Diabético/tratamento farmacológico , Método Duplo-Cego , Etanol/farmacologia
3.
Phytomedicine ; 123: 155157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951147

RESUMO

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Assuntos
Bacopa , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Bacopa/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Arecolina/farmacologia , Neoplasias Bucais/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose , Espécies Reativas de Oxigênio/metabolismo
4.
Brain Res ; 1822: 148609, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783259

RESUMO

BACKGROUND: It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS: In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS: The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS: The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.


Assuntos
Terapia por Acupuntura , Depressão , Ratos , Camundongos , Animais , Depressão/terapia , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapsinas/metabolismo , Arecolina/metabolismo , Arecolina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Escopolamina/farmacologia , Córtex Pré-Frontal/metabolismo , Plasticidade Neuronal , Hipocampo/metabolismo , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo
5.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240342

RESUMO

Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.


Assuntos
Extratos Vegetais , Plantas Medicinais , Extratos Vegetais/química , Areca/efeitos adversos , Areca/química , Nozes/química , Arecolina/farmacologia
6.
Nutrients ; 15(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242285

RESUMO

The areca nut is often consumed as a chewing food in the Asian region. Our previous study revealed that the areca nut is rich in polyphenols with high antioxidant activity. In this study, we further assessed the effects and molecular mechanisms of the areca nut and its major ingredients on a Western diet-induced mice dyslipidemia model. Male C57BL/6N mice were divided into five groups and fed with a normal diet (ND), Western diet (WD), WD with areca nut extracts (ANE), areca nut polyphenols (ANP), and arecoline (ARE) for 12 weeks. The results revealed that ANP significantly reduced WD-induced body weight, liver weight, epididymal fat, and liver total lipid. Serum biomarkers showed that ANP ameliorated WD-enhanced total cholesterol and non-high-density lipoprotein (non-HDL). Moreover, analysis of cellular signaling pathways revealed that sterol regulatory element-binding protein 2 (SREBP2) and enzyme 3-hydroxy-3-methylglutaryld coenzyme A reductase (HMGCR) were significantly downregulated by ANP. The results of gut microbiota analysis revealed that ANP increased the abundance of beneficial bacterium Akkermansias and decreased the abundance of the pathogenic bacterium Ruminococcus while ARE shown the opposite result to ANP. In summary, our data indicated that areca nut polyphenol ameliorated WD-induced dyslipidemia by increasing the abundance of beneficial bacteria in the gut microbiota and reducing the expressions of SREBP2 and HMGCR while areca nut ARE inhibited this improvement potential.


Assuntos
Areca , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Areca/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Nozes , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Arecolina/farmacologia , Extratos Vegetais/farmacologia
7.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1871-1880, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534257

RESUMO

In this study, low-field nuclear magnetic resonance(LF-NMR) and magnetic resonance imaging(MRI) were employed to analyze the water distribution, status, and migration in the moistening process of Arecae Semen. Peleg model was adopted to study the water absorption kinetics of Arecae Semen moistened at different water temperatures(10, 30, and 50 ℃). The Arecae Semen samples soaked at different water temperatures all contained four water states: binding water T_(21), non-flowing water T_(22), free water T_(23), and unbound water T_(24). Non-flowing water had the largest increase in peak area during the moistening process, followed by free water. The peak areas of non-flowing water, free water, and total water were correlated with the water content(P<0.01). Therefore, LF-NMR can quickly and non-destructively predict the water content of Arecae Semen during moistening. The peak area of non-flowing water and the content of free water were correlated with the content of arecoline in the soaking solution(P<0.01), which indicated that the faster flow of non-flowing water and more free water corresponded to more arecoline dissolved. The MRI images showed that the water migration pathway varied at different soaking temperatures, and the moistening degree obtained by this means was consistent with that obtained based on traditional experience. The rate constant K_1 fitted by Peleg model decreased with the increase in water temperature, while the capacity constant K_2 showed an opposite trend. The Arrhenius equation fitting of K_1 with temperature showed that the activation energy of Arecae Semen in the moistening process was 32.98 kJ·mol~(-1). LF-NMR/MRI can be used to analyze the water status and content and determine the end moisturing point of Arecae Semen. Peleg model can accurately describe the water absorption properties of Arecae Semen in the moistening process. The findings of this study can guide the moistening optimization and mechanism research of other seed Chinese medicinal materials.


Assuntos
Areca , Medicamentos de Ervas Chinesas , Arecolina/análise , Medicamentos de Ervas Chinesas/análise , Cinética , Sementes/química , Água/análise
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163557

RESUMO

Betel quid (BQ) is a package of mixed constituents that is chewed by more than 600 million people worldwide, particularly in Asia. The formulation of BQ depends on a variety of factors but typically includes areca nut, betel leaf, and slaked lime and may or may not contain tobacco. BQ chewing is strongly associated with the development of potentially malignant and malignant diseases of the mouth such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC), respectively. We have shown recently that the constituents of BQ vary geographically and that the capacity to induce disease reflects the distinct chemical composition of the BQ. In this review, we examined the diverse chemical constituents of BQ and their putative role in oral carcinogenesis. Four major areca alkaloids-arecoline, arecaidine, guvacoline and guvacine-together with the polyphenols, were identified as being potentially involved in oral carcinogenesis. Further, we propose that fibroblast senescence, which is induced by certain BQ components, may be a key driver of tumour progression in OSMF and OSCC. Our study emphasizes that the characterization of the detrimental or protective effects of specific BQ ingredients may facilitate the development of targeted BQ formulations to prevent and/or treat potentially malignant oral disorders and oral cancer in BQ users.


Assuntos
Areca/química , Carcinoma de Células Escamosas/induzido quimicamente , Neoplasias Bucais/induzido quimicamente , Fibrose Oral Submucosa/induzido quimicamente , Extratos Vegetais/efeitos adversos , Arecolina/efeitos adversos , Arecolina/análogos & derivados , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Humanos , Neoplasias Bucais/patologia , Ácidos Nicotínicos/efeitos adversos , Fibrose Oral Submucosa/patologia
9.
Artigo em Chinês | WPRIM | ID: wpr-928183

RESUMO

In this study, low-field nuclear magnetic resonance(LF-NMR) and magnetic resonance imaging(MRI) were employed to analyze the water distribution, status, and migration in the moistening process of Arecae Semen. Peleg model was adopted to study the water absorption kinetics of Arecae Semen moistened at different water temperatures(10, 30, and 50 ℃). The Arecae Semen samples soaked at different water temperatures all contained four water states: binding water T_(21), non-flowing water T_(22), free water T_(23), and unbound water T_(24). Non-flowing water had the largest increase in peak area during the moistening process, followed by free water. The peak areas of non-flowing water, free water, and total water were correlated with the water content(P<0.01). Therefore, LF-NMR can quickly and non-destructively predict the water content of Arecae Semen during moistening. The peak area of non-flowing water and the content of free water were correlated with the content of arecoline in the soaking solution(P<0.01), which indicated that the faster flow of non-flowing water and more free water corresponded to more arecoline dissolved. The MRI images showed that the water migration pathway varied at different soaking temperatures, and the moistening degree obtained by this means was consistent with that obtained based on traditional experience. The rate constant K_1 fitted by Peleg model decreased with the increase in water temperature, while the capacity constant K_2 showed an opposite trend. The Arrhenius equation fitting of K_1 with temperature showed that the activation energy of Arecae Semen in the moistening process was 32.98 kJ·mol~(-1). LF-NMR/MRI can be used to analyze the water status and content and determine the end moisturing point of Arecae Semen. Peleg model can accurately describe the water absorption properties of Arecae Semen in the moistening process. The findings of this study can guide the moistening optimization and mechanism research of other seed Chinese medicinal materials.


Assuntos
Areca , Arecolina/análise , Medicamentos de Ervas Chinesas/análise , Cinética , Sementes/química , Água/análise
11.
Environ Toxicol ; 36(8): 1567-1575, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33929070

RESUMO

Habitual chewing of areca nut increases the risk of cardiovascular disease mortality, but less report demonstrate the toxic mechanism of areca nut on heart. To investigate toxicity of areca nut on cardiomyocytes, we induced the heart injury with arecoline to evaluate the acute damage of areca nut on heart. Different concentrations of are coline (lowdosage: 5 mg/kg/day and high dosage 50 mg/kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte. Themyocardial architecture of the rat heart was observed. The arecoline-induced apoptotic proteins were analysed via western blotting. The myocardialarchitecture of heart was injured with arecoline and TUNEL stain was also shown are coline-induced cardiac apoptosis. Arecoline promoted the protein expression of both Fas dependent snd mitochondrial dependent apoptosis. In summary, arecoline induces cardiac toxicity and apoptosis by inducing both death receptor and mitochondria-dependent apoptotic pathways on heart.


Assuntos
Areca , Arecolina , Animais , Proteína Ligante Fas , Extratos Vegetais , Ratos , Ratos Sprague-Dawley
13.
Phytochem Anal ; 32(6): 970-981, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33619832

RESUMO

INTRODUCTION: The fruits of Areca catechu, also called areca nuts, are widely used as popular masticatory and traditional herbal medicine in Asia. Besides arecoline and related alkaloids, limited information is available about further primary and secondary metabolites and their potential biological activities. OBJECTIVE: Here we aimed to further enhance our knowledge on phytochemical profiles of A. catechu and Areca triandra fruits. We intended to comprehensively identify metabolites in A. catechu and A. triandra fruits. METHODOLOGY: Metabolites were identified by ultra-performance liquid chromatography triple-quadrupole tandem mass spectrometry (UPLC-MS/MS). The occurrence of 12 selected bioactive compounds in 4 different developmental stages of A. catechu and A. triandra was quantified by LC-MS/MS. RESULTS: A total of 791 metabolites was identified. Of these, 115 metabolites could successfully be mapped to 44 Kyoto Encyclopedia of Genes and Genomes metabolic pathways, and 154 metabolites occurred at significantly different levels in A. catechu compared to A. triandra. Several components with known biological activities were identified for the first time in A. catechu and A. triandra. The abundance of many of these new components was similar in A. catechu and A. triandra, but significantly different between the pericarp and the seeds of A. catechu fruits. CONCLUSIONS: Metabolic profiles indicate that fruits of the Areca species compared here have similar primary and secondary metabolites. Our findings provide new insights into A. catechu and A. triandra as valuable sources for traditional medicine and they pave the way for further studies to potentially improve the underlying pharmaceutical and physiological effects.


Assuntos
Areca , Preparações Farmacêuticas , Arecolina , Cromatografia Líquida , Espectrometria de Massas em Tandem
14.
Oral Dis ; 26(7): 1474-1482, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32391600

RESUMO

OBJECTIVES: Oral submucous fibrosis (OSMF) is a chronic inflammatory disease and a potentially malignant oral disorder. However, the best therapeutic treatment for OSMF remains uncertain. Our previous study showed that photobiomodulation (PBM) therapy and forskolin could reduce arecoline-induced fibrosis reactions via the cAMP pathway. The present study aimed to establish an animal model of areca nut extract (ANE)-induced OSMF and to evaluate the therapeutic potential of PBM and forskolin for ANE-induced OSMF. SUBJECTS AND METHODS: The mice were divided into five groups. The buccal tissues were harvested for histomorphological analysis and immunoblotting. RESULTS: Our results showed that PBM significantly reduced the development of ANE-induced OSMF, quantified by changes in submucosal layer thickness and collagen deposition. Additionally, PBM could extensively reduce the protein expression of the fibrotic marker genes alpha-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) in buccal submucous lesions. However, forskolin treatment significantly decreased the protein expression of fibrotic marker genes but slightly decreased the observed histomorphological changes. CONCLUSIONS: We established an ANE-induced OSMF mouse model, which also provided a model for the development of a therapeutic treatment for OSMF. The anti-fibrotic effects of PBM and forskolin may be useful for clinical interventions.


Assuntos
Terapia com Luz de Baixa Intensidade , Fibrose Oral Submucosa , Animais , Areca/efeitos adversos , Arecolina , Colágeno , Camundongos , Fibrose Oral Submucosa/terapia
15.
Phytomedicine ; 69: 153195, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32200293

RESUMO

BACKGROUND: Areca nut has anti-inflammatory, antiparasitic, antihypertensive, and antidepressant properties. The pathological hallmarks of inflammatory joint diseases are an increased number of osteoclasts and impaired differentiation of osteoblasts, which may disrupt the bone remodeling balance and eventually lead to bone loss. PURPOSE: The present study assessed the effects of arecoline, the main alkaloid found in areca nut, on osteoclast and osteoblast differentiation and function. METHOD: M-CSF/RANKL-stimulated murine bone marrow-derived macrophages (BMMs) were incubated with several concentrations of arecoline, and TRAP staining and pit formation were assessed to monitor osteoclast formation. Quantitative real-time RT-PCR and western blot analyses were used to analyze the expression of osteoclast-associated genes and signaling pathways. The effects of arecoline on bone were investigated in an in vivo mouse model of lipopolysaccharide (LPS)-induced trabecular bone loss after oral administration of arecoline. Alizarin red S staining and assays to measure ALP activity and the transcription level of osteoblast-related genes were used to evaluate the effects of arecoline on osteoblast differentiation and bone mineralization. RESULTS: In a dose-dependent manner, arecoline at concentrations of 50-100 µM reduced both the development of TRAP-positive multinucleated osteoclasts and the formation of resorption pits in M-CSF/RANKL-stimulated BMMs. In M-CSF/RANKL-stimulated BMMs, arecoline also suppressed the expression and translocation of c-Fos and NFATcl, and osteoclast differentiated-related genes via interference with the AKT, MAPK, and NF-kB activation pathways. Femur bone loss and microcomputed tomography parameters were recovered by oral administration of arecoline in the mouse LPS-induced bone loss model. Lastly, arecoline increased ALP activity, bone mineralization, and the expression of osteoblast differentiation-related genes, such as ALP and Runx2, in MC3T3-E1 cells. CONCLUSION: Our data suggest that arecoline may attenuate or prevent bone loss by suppressing osteoclastogenesis and promoting osteoblastogenesis. These findings provide evidence supporting arecoline's use as a potential therapeutic agent in bone-loss disorders and diseases.


Assuntos
Arecolina/farmacologia , Reabsorção Óssea/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos DBA , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Microtomografia por Raio-X
16.
Aging (Albany NY) ; 11(23): 11624-11639, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831717

RESUMO

BACKGROUND: There are 200-600 million betel quid (BQ) chewers in the world. BQ increases oral cancer risk. Matrix metalloproteinase-9 (MMP-9) is responsible for matrix degradation, cancer invasion and metastasis. Whether areca nut extract (ANE), a BQ component, stimulates MMP-9 secretion, and the related signaling pathways awaits investigation. RESULTS: ANE (but not arecoline) stimulated MMP-9 production of gingival keratinocytes and SAS cancer epithelial cells. ANE stimulated TGF-ß1, p-Smad2, and p-TAK1 protein expression. ANE-induced MMP-9 production/expression in SAS cells can be attenuated by SB431542 (ALK5/Smad2 inhibitor), 5Z-7-Oxozeaenol (TAK1 inhibitor), catalase, PD153035 (EGFR tyrosine kinase inhibitor), AG490 (JAK inhibitor), U0126 (MEK/ERK inhibitor), LY294002 (PI3K/Akt inhibitor), betel leaf (PBL) extract, and hydroxychavicol (HC, a PBL component), and melatonin, but not by aspirin. CONCLUSIONS: AN components contribute to oral carcinogenesis by stimulating MMP-9 secretion, thus enhancing tumor invasion/metastasis. These events are related to reactive oxygen species, TGF-ß1, Smad2-dependent and -independent signaling, but not COX. These signaling molecules can be biomarkers of BQ carcinogenesis. PBL, HC and melatonin and other targeting therapy can be used for oral cancer treatment. METHODS: ANE-induced MMP-9 expression/secretion of oral epithelial cells and related TGF-ß1, Smad-dependent and -independent signaling were studied by MTT assay, RT-PCR, western blotting, immunofluorescent staining, and ELISA.


Assuntos
Areca , Células Epiteliais/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Extratos Vegetais/farmacologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Arecolina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Eugenol/análogos & derivados , Eugenol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/genética , Melatonina/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética
17.
Pharmacol Rep ; 71(6): 1115-1124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31645006

RESUMO

BACKGROUND: Metformin, a widely used anti-diabetic drug has gained enormous attention as an anticancer agent. This study seeks to investigate the efficacy of metformin in ameliorating aqueous extract of betel-nut (AEBN) and arecoline induced carcinogenesis in a murine model. METHODS: Swiss albino mice were exposed to AEBN (2 mg ml-1) and arecoline (10 µg ml-1) in drinking water for 16 weeks followed by co-administration of metformin (75 mg kg-1 or 150 mg kg-1) for 4 or 8 weeks. Histological changes and oxidative stress were assessed by haematoxylin and eosin staining, TBARS assay and protein carbonylation assay respectively. Lipid profile was determined using an automated analyzer. Expression of total and phosphorylated AMPK, ACC and p53 were determined by immunoblotting. RESULTS: AEBN and arecoline induced dyslipidemia by downregulating AMPK (Thr-172) and activating ACC (Ser-79); they also downregulated tumor suppressor p53 (Ser-15). Metformin treatment induced AMPK-dependent alleviation of dyslipidemia in a dose and time dependent manner, upregulated p53 (Ser-15), restored tissue architecture and reduced oxidative stress in tissues of AEBN and arecoline treated mice. CONCLUSION: This study establishes that betel nut induces dyslipidemia through its alkaloid, arecoline by inhibition of AMPK (Thr-172) and activation of ACC (Ser-79) and highlights the therapeutic potential of metformin for treatment of betel-nut induced carcinogenesis, indicating the repurposing of the old drug in a new avenue.


Assuntos
Areca , Arecolina/efeitos adversos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Metformina/farmacologia , Extratos Vegetais/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Dislipidemias/tratamento farmacológico , Displasia Ectodérmica , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
18.
Pak J Pharm Sci ; 31(2): 385-392, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29618425

RESUMO

The study was aimed at evaluating various biological actions of widely consumed Areca catechu nut. The nut's ethanolic extract exhibited cytotoxicity (lung cancer cell line), embryotoxicity (chick embryo), phytotoxicity (Lemna minor), insecticidal (Rhyzopertha dominica), anti-bacterial (Pseudomonas aeruginosa), anti-fungal (Microsporum canis) and mitogenic (human blood lymphocytes) actions. The standardization results revealed presence of 1.7 µ g arecoline per mg of extract. In conclusion, the Areca nut is endowed with both harmful and beneficial biological actions. Keeping in view its wide consumption and ease of availability, the aforesaid information should be channelized for health and agricultural benefits.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Areca/química , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/química , Araceae/efeitos dos fármacos , Arecolina/análise , Artemia/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião de Galinha/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Etanol/química , Humanos , Inseticidas/química , Índice Mitótico , Nozes/química , Extratos Vegetais/química , Extratos Vegetais/normas
19.
Oncol Res ; 26(3): 483-494, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28550687

RESUMO

Oral submucous fibrosis (OSF) induced by chewing of the areca nut has been considered to be a precancerous lesion with a high probability of developing oral squamous cell carcinoma. Tanshinone (TSN) is the main component extracted from Salvia miltiorrhiza, a traditional Chinese medicine, which was found to have diverse pharmacological effects, such as anti-inflammatory and antitumor. In the current study, we aimed to identify the inhibitory effects and the underlying mechanism of TSN on OSF progress. We found that treatment with TSN inhibited the arecoline-mediated proliferation of primary human oral mucosal fibroblasts and reversed the promotive effects of arecoline on the EMT process. By RNA deep sequencing, we screened two possible targets for TSN: LSD1 and p53. We confirmed that p53 is much lower in OSF than in normal mucous tissues. In addition, p53 and its downstream molecules were decreased by arecoline treatment in oral mucosal fibroblasts, which was reversed by treatment with TSN in a dose-dependent manner. Our results also revealed that arecoline stimulation resulted in hypermethylation of the promoter of TP53 and subsequent downregulation of p53 levels, which was reversed by TSN. Furthermore, we identified that LSD1 could epigenetically activate TP53 by recruiting H3K27me1 and H3K4m2 to its promoter. Our findings provide new insights into the mechanism by which TSN influences arecoline-induced OSF and rationale for the development of clinical intervention strategies for OSF and even oral squamous cell carcinoma.


Assuntos
Abietanos/farmacologia , Areca/química , Arecolina/toxicidade , Transição Epitelial-Mesenquimal , Mucosa Bucal/patologia , Fibrose Oral Submucosa/patologia , Proteína Supressora de Tumor p53/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Proliferação de Células , Células Cultivadas , Agonistas Colinérgicos/toxicidade , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo
20.
J Formos Med Assoc ; 117(6): 527-534, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28720506

RESUMO

BACKGROUND/PURPOSE: Oral submucous fibrosis (OSF) is a premalignant condition caused by the chewing of areca nut (AN). Transforming growth factor ß (TGFß) plays a central role in the pathogenesis of OSF. Connective tissue growth factor (CTGF or CCN2) and early growth response-1 (Egr-1) are important mediators in the fibrotic response to TGFß in several fibrotic disorders including OSF. Arecoline, a major AN alkaloid, induced the synthesis of CCN2 and Egr-1 in human buccal mucosal fibroblast (BMFs). The aims of this study were to investigate whether arecoline-induced CCN2 and Egr-1 syntheses are mediated through TGFß1 signaling and to inspect the detailed mechanisms involved. METHODS: Western blot and TGFß1 Emax® ImmunoAssay were used to measure the effect of arecoline on the TGFß signaling pathways. 2',7'-dichlorodihydrofluorescein diacetate and MitoSOX™ Red were used to measure the effect of arecoline on the cellular and mitochondrial reactive oxygen species (ROS). RESULTS: Arecoline induced latent TGFß1 activation, Smad2 phosphorylation, and mitochondrial and total cellular ROS in BMFs. TGFß-neutralizing antibody completely inhibited the arecoline-induced synthesis of CCN2 and Egr-1. Mito-TEMPO, a mitochondria-targeted antioxidant, completely suppressed arecoline-induced latent TGFß1 activation and mitochondrial and total cellular ROS. Epigallocatechin-3-gallate (EGCG) dose-dependently inhibited arecoline-induced TGFß1 activation and mitochondrial ROS in BMFs. CONCLUSION: Our results indicated that arecoline-induced mitochondrial ROS plays pivotal roles in the activation of latent TGFß1 leading to the initiation of TGFß1 signaling and subsequent increase in the synthesis of CCN2 and Egr-1. EGCG can be a useful agent in the chemoprevention and treatment of OSF.


Assuntos
Areca/efeitos adversos , Arecolina/farmacologia , Catequina/análogos & derivados , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Western Blotting , Catequina/farmacologia , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imunoensaio , Mitocôndrias/metabolismo , Mucosa Bucal/patologia , Fibrose Oral Submucosa/induzido quimicamente , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Tóxicas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA