RESUMO
Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.
Assuntos
Actinomycetales , Microbiota , Actinomycetales/genética , Ágar/metabolismo , Bactérias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , RNA Ribossômico 16S/genética , AreiaRESUMO
As a common medicinal and edible resource in China, Coicis Semen has a long history of cultivation and medicinal use. Traditional Chinese medicine(TCM) clinically believes that Coicis Semen has the effect of strengthening the spleen and tonifying the lungs, clearing heat and dampness, removing pus and paralysis, and stopping diarrhea. Therefore, it is used to treat edema, foot odor, spleen deficiency, diarrhea, and other symptoms. The above effects are closely related to the active ingredients of Coicis Semen, such as esters, fatty acids, polysaccharides, proteins, as well as phenolic acids, sterols, flavonoids, lactams, triterpenes, alkaloids, and adenosine. Modern research has found that Coicis Semen also has anti-cancer, anti-inflammatory, antioxidant, hypoglycemic, and hypotensive effects and other pharmacological activities, and it can improve immunity and regulate lipid metabolism. Coicis Semen is widely distributed in China, mainly produced in Guizhou, Yunnan, Fujian, Sichuan, and other places, and the quality of Coicis Semen from different origins varies. From ancient times to the present, Coicis Semen processing methods have experienced the process from simple to complex, and the types of auxiliary materials are more extensive, such as soil, bran, and river sand. These processing methods have been inherited from generation to generation. Nowadays, the commonly used methods are bran-fried, stir-fried, sand-fried, etc. In this paper, by reviewing the relevant literature in China and abroad in recent years, the main active ingredients and related pharmacological effects of Coicis Semen are sorted out, and the effects of different origins and processing methods on the chemical composition of Coicis Semen are summarized, with a view to providing references for the comprehensive development and utilization of Coicis Semen and the further study of its mechanism of action.
Assuntos
Coix , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Areia , China , Medicina Tradicional Chinesa , DiarreiaRESUMO
Inorganic fertilizers are routinely used in large scale crop production for the supplementation of nitrogen, phosphorus, and potassium in nutrient poor soil. To explore metabolic changes in tomato plants grown on humic sand under different nutritional conditions, matrix-assisted laser desorption ionization (MALDI) mass spectrometry was utilized for the analysis of xylem sap. Variations in the abundances of metabolites and oligosaccharides, including free N-glycans (FNGs), were determined. Statistical analysis of the sample-related peaks revealed significant differences in the abundance ratios of multiple metabolites, including oligosaccharides, between the control plants, grown with no fertilizers, and plants raised under "ideal" and "nitrogen deficient" nutritional conditions, i.e., under the three treatment types. Among the 36 spectral features tentatively identified as oligosaccharides, the potential molecular structures for 18 species were predicted based on their accurate masses and isotope distribution patterns. To find the spectral features that account for most of the differences between the spectra corresponding to the three different treatments, multivariate statistical analysis was carried out by orthogonal partial least squares-discriminant analysis (OPLS-DA). They included both FNGs and non-FNG compounds that can be considered as early indicators of nutrient deficiency. Our results reveal that the potential nutrient deficiency indicators can be expanded to other metabolites beyond FNGs. The m/z values for 20 spectral features with the highest variable influence on projection (VIP) scores were ranked in the order of their influence on the statistical model.
Assuntos
Metaboloma , Solanum lycopersicum , Metaboloma/efeitos dos fármacos , Solanum lycopersicum/química , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Fertilizantes , Areia/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The construction of ecological civilization emphasizes holistic protection of "mountain-water-forest-farmland-lake-grassland-sand", which has become an important concept of desertification prevention projects in arid and semi-arid areas of China. In the past, sandy land management and use have been neglected in desertification prevention and control, in that the links have not been effectively connected and the long-term and efficient desertification prevention has not been realized. Therefore, combining Qian Xuesen's understanding of "deserticulture", we comprehensively discussed the "long-term achievements" of China's desertification control miracle from the perspective of the historical evolution of the interaction of technology and practice, and the strategic development of policy guidance. Further, we defined the concepts of desertification prevention, desertification control, and sandy land management and use. We analyzed the coupling and coordination relationship between the four links and the scientific principle based on the development of ecological industry chain. Finally, we put forward the policy and market realization pathways, with efficient sandy land management as the core, desertification prevention as the basis, desertification control as the channel, and long-term sandy land use as the foundation. We expected to provide theoretical and practical guidance for creating a new miracle of China's desertification prevention and control.
Assuntos
Conservação dos Recursos Naturais , Areia , Monitoramento Ambiental , China , Florestas , EcossistemaRESUMO
To determine the diversity of nitrogen-fixing and carbon-fixing microbial groups in aeolian sandy soil and the effects of sand-fixation plantation type on the structures of two microbial groups in the Horqin Sandy Land, we selected six representative sand-fixation vegetations with the same age, including Caragana microphylla, Artemisia halodendron, Salix gordejevii, Hedysarum fruticosum, Populus simonii, and Pinus sylvestris var. mongolica as well as their adjacent natural Ulmus pumila open forest as test objects to investigate the diversities and structures of nifH- and cbbL-carrying microbial communities in soil by high-throughput sequencing technique. The results showed that vegetation type significantly affected soil physical and chemical properties, microbiological activities, diversities and the main compositions of nitrogen-fixing and carbon-fixing microbial communities. The diversity of soil nitrogen-fixing microbial communities under S. gordejevii and P. simonii plantations and that of carbon-fixing microbial communities under P. sylvestris var. mongolica and P. simonii plantations were significantly higher than those of other plantations. Skermanella, Bradyrhizobium, Azospirillum, and Azohydromonas were dominant nitrogen-fixation genera, with the average relative abundance of 22.3%, 21.5%, 20.8%, and 17.8%, respectively. Soil carbon-fixation microbial communities were dominated by Pseudonocardia, Bradyrhizobium, Cupriavidus, and Mesorhizobium, with relative abundance of 22.4%, 18.5%, 10.5%, and 6.0%, respectively. Soil nitrogen-fixing microbial community under C. mirophylla plantation and carbon-fixing communities under S. gordejevii and P. simonii plantations were very close to those of natural U. pumila open forest. Soil organic matter, NH4+-N, and total phosphorus were the direct determining factors for nitrogen-fixing microbial community, while pH, soil moisture, and available phosphorus were main factors influencing carbon-fixing microbial community. These observations potentially provide the scienti-fic foundations for evaluating the ecological benefits of revegetation practice in sandy lands.
Assuntos
Microbiota , Solo , Solo/química , Areia , China , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , FósforoRESUMO
This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.
Assuntos
Areia , Solo , Solo/química , Medicago sativa , Rizosfera , Ácido Poliglutâmico , Microbiologia do Solo , Bactérias , Acidobacteria , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Suplementos Nutricionais/análiseRESUMO
Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.
Assuntos
Compostos de Amônio , Poluentes do Solo , Solo/química , Fósforo , Areia , Argila , Nitratos , Nitrogênio , Carvão Vegetal/química , Poluentes do Solo/análiseRESUMO
Changes in soil nitrogen components in tea gardens affect the soil nitrogen supply capacity and nitrogen cycle. In this study, soil samples were collected from forest land, cultivated land, and tea gardens with different plantation ages (30, 50, and 70 years) to explore the changes in soil nitrogen components and their relationship with physicochemical properties and enzyme activities. The results showed that:â with the increase in tea plantation age, the silt, total phosphorus, and urease and catalase activities gradually increased, whereas the sand, clay, pH, electrical conductivity, soil organic carbon, and the activities of invertase gradually decreased. The alkaline phosphatase activity increased first and then decreased with the increase in tea plantation age, and no significant differences were observed in soil water content and acid phosphatase activity. â¡ With the increase in tea plantation age, the contents of acid ammonia nitrogen, amino acid nitrogen, and nitrate nitrogen (NO3--N) increased significantly, and the contents of total nitrogen, acid ammonia nitrogen, hydrolyzable unknown nitrogen, and non-hydrolyzable nitrogen in tea gardens were significantly higher than those in forest land. ⢠The total phosphorus, alkaline phosphatase, and urease were the main factors affecting soil nitrogen components. Among them, organic nitrogen components were significantly correlated with total phosphorus and alkaline phosphatase, and inorganic nitrogen components were significantly correlated with alkaline phosphatase, whereas total nitrogen had significant correlations with sand, silt, total phosphorus, urease, and alkaline phosphatase.
Assuntos
Fosfatase Alcalina , Solo , Solo/química , Areia , Nitrogênio/análise , Carbono , Urease , Amônia , Fósforo/análise , Chá , Microbiologia do Solo , ChinaRESUMO
Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.
Assuntos
Micorrizas , Rhizobium , Robinia , Cádmio/toxicidade , Areia , AntioxidantesRESUMO
Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.
Assuntos
Selênio , Poluentes do Solo , Humanos , Cádmio/análise , Areia , Biodegradação Ambiental , Biofortificação , Solo , Produtos Agrícolas , Oxirredução , Poluentes do Solo/análiseRESUMO
Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.
Assuntos
Cianobactérias , Líquens , Microbiota , Ecossistema , Solo , Areia , Microbiologia do Solo , Nitrogênio , Fósforo , ChinaRESUMO
Chloramphenicol, a broad-spectrum antibiotic employed for controlling bacterial infections, presents an intriguing aspect in terms of its environmental fate in soils. 14C-labeled chloramphenicol was used to explore its mineralization and residue characteristics in three distinct agricultural soils in China. The findings revealed a nuanced pattern in the fate of 14C-chloramphenicol, with notable variations among the different soils under investigation. The chloramphenicol extract residue exhibited a reduction of 18.04% in sandy clay soil, 23.04% in clay loam soil, and 21.73% in loamy clay soil. Notably, the mineralization rate in sandy clay soil was 25.22% surpassed that in the other two soils, particularly during the initial stages of incubation. Over time, the diminishing extract residue underwent conversion into minerals and bound residue. The formation rate of bound residue was increased from 44.59 to 53.65% after adding 10% manure, suggesting that chloramphenicol easily binds with soils rich in organic matter. The bound residue is predominantly localized in the humin fraction across all soils. Additionally, the sterilized soil experiments indicated the pivotal role of microorganisms in influencing the fate of chloramphenicol under the specified experimental conditions. In conclusion, this study offers valuable insights into the environmental dynamics of chloramphenicol in soils, emphasizing the importance of soil composition, organic matter content, and microbial activity. The findings contribute to a scientific understanding of the environmental safety implications associated with chloramphenicol usage.
Assuntos
Cloranfenicol , Solo , Solo/química , Radioisótopos de Carbono , Argila , Areia , Extratos Vegetais , CarbonoRESUMO
Many species of slugs are considered serious pests in agriculture and horticulture around the world. In Europe, slugs of the genera Arion and Deroceras are the most harmful pests in agriculture. Therefore, the main goal of this study was to evaluate the effect of the whole-cell metabolites of 10 strains of five Xenorhabdus and three slug-parasitic nematodes (Phasmarhabditis hermaphrodita, Phasmarhabditis bohemica, and Phasmarhabditis apuliae) on the feeding behaviour and repellent effect on target slugs and evaluate a new possible means of biocontrol of these pests. The repellent and anti-feedant effects of nematode-killed insects, metabolites, slug-parasitic nematodes and a combination of metabolites and nematodes were studied through experimental designs: sand-filled plastic boxes divided into two parts in several modifications: with dead Galleria mellonella killed by nematodes, lettuce treated with bacterial metabolites and lettuce placed on the treated sand. We found that slugs avoid eating G. mellonella killed by nematodes, while they eat freeze-killed G. mellonella. Similarly, they avoid the consumption of lettuce in areas treated with bacterial metabolites (the most effective strains being Xenorhabus bovienii NFUST, Xenorhabdus kozodoii SLOV and JEGOR) with zero feeding in the treated side. All three Phasmarhabditis species also provided a significant anti-feedant/repellent effect. Our study is the first to show the repellent and anti-feedant effects of metabolites of Xenorhabdus bacteria against Arion vulgaris, and the results suggest that these substances have great potential for biocontrol. Our study is also the first to demonstrate the repellent effect of P. apuliae and P. bohemica. KEY POINTS: ⢠Slugs avoid eating G. mellonella killed by entomopathogenic nematodes. ⢠Bacterial metabolites have a strong repellent and antifeedant effect on slugs. ⢠Presence of slug parasitic nematodes increases the repellent effect of metabolites.
Assuntos
Nematoides , Xenorhabdus , Animais , Areia , Agricultura , Bactérias , LactucaRESUMO
The hydroxyapatite (HAp; Ca10 (PO4 )6 (OH)2 )) has good biocompatibility, bioactivity, and osteoconductivity as a bone implant because the main inorganic mineral of human bone is HAp. The use of scaffold HAp from biogenic resources that contain high calcium and polymer as a pore forming agent to support bone growth is a longstanding area of interest. In this study, porous scaffolds based on HAp were synthesized from sand lobster (SL; Panulirus homarus) shells as a source of calcium using the porogen leaching method with polyethylene oxide (PEO) and chitosan (Chs) as polymeric porogen. The present study aims to synthesize HAp derived from SL shells and evaluate the effect variations of PEO on the physicochemical properties of the scaffold and cytotoxicity in cell viability assay. Briefly, the SL shell powder was calcinated with temperature variations of 600°C, 800°C, and 1000°C for 6 h. Based on the characterization, it was shown that 1000°C was the optimum calcination temperature for SL shells to synthesize HAp using the precipitation method. The characterization results of HAp using energy dispersive x-ray (EDX) revealed that the molar ratio of Ca/P was 1.67. The Fourier transform infrared (FTIR) and x-ray diffractometer (XRD) spectral patterns indicated that HAp had been successfully synthesized with minor ß-tricalcium phosphate (ß-TCP), a calcium phosphate with high biocompatibility. Porous scaffolds were synthesized by varying the concentration of PEO at 0, 5, 10, and 15 wt %. Physicochemical analysis revealed that a higher concentration of PEO affected decreased crystallinity and compressive strength, but on the other hand, the porosity and pore sizes increased. Based on the physicochemical analysis, the synthesized porous scaffold showed that HAp/PEO/Chs 15 wt % had the most potential as a scaffold for biomedical applications. MTT Assay, after 24 h incubation, revealed that the scaffold was safe for use at low concentrations on the MC3T3E1 osteoblast cells, with a percentage of cell viability of 83.23 ± 3.18% at 23.4375 µg/mL. Although the cell viability decreased at higher concentrations, the HAp/PEO/Chs 15 wt % scaffold was cytocompatible with the cells. Thus, in the present study, HAp/PEO/Chs 15 wt % was the best scaffold based on pore structure, chemical composition, mechanical and crystalographic properties and cell viability.
Assuntos
Quitosana , Palinuridae , Animais , Humanos , Engenharia Tecidual/métodos , Durapatita/farmacologia , Durapatita/química , Quitosana/química , Porosidade , Alicerces Teciduais/química , Nephropidae , Areia , Polietilenoglicóis , Cálcio , Polímeros , Materiais Biocompatíveis/químicaRESUMO
BACKGROUND: Sand therapy is a non-pharmacological physiotherapy method that uses the natural environment and resources of Xinjiang to treat through the heat transfer and magnetic effects of sand. OBJECTIVE: Employing the two-phase flow-Casson blood flow model, we investigate the mechanism of atherosclerosis prevention via sand therapy, offering a biomechanical theoretical rationale for the prevention of atherosclerosis through sand therapy via the prism of computational fluid dynamics (CFD). METHODS: Sand therapy experiments were conducted to obtain popliteal artery blood flow velocity, and blood was considered as a two-phase flow composed of plasma and red blood cells, and CFD method was applied to analyze the hemodynamic effects of Casson's blood viscosity model before and after sand therapy. RESULTS: (1) The blood flow velocity increased by 0.24 m/s and 0.04 m/s at peak systolic and diastolic phases, respectively, after sand therapy; the axial velocity of blood vessels increased by 28.56% after sand therapy. (2) The average red blood cell viscosity decreased by 0.00014 Pa â s after sand therapy. (3) The low wall shear stress increased by 1.09 Pa and the high wall shear stress reached 41.47 Pa after sand therapy. (4) The time-averaged wall shear stress, shear oscillation index and relative retention time were reduced after sand therapy. CONCLUSION: The increase of blood flow velocity after sand therapy can reduce the excessive deposition of cholesterol and other substances, the decrease of erythrocyte viscosity is beneficial to the migration of erythrocytes to the vascular center, the increase of low wall shear stress has a positive effect on the prevention of atherosclerosis, and the decrease of time-averaged wall shear stress, shear oscillation index and relative retention time can reduce the occurrence of thrombosis.
Assuntos
Aterosclerose , Areia , Humanos , Simulação por Computador , Modelos Cardiovasculares , Aterosclerose/prevenção & controle , Artérias , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Estresse MecânicoRESUMO
Bacillus sensu lato were screened for their capacity to mineralize organic phosphorus (P) and promote plant growth, improving nitrogen (N) and P nutrition of soybean. Isolates were identified through Type Strain Genome Server (TYGS) and Average Nucleotide Identity (ANI). ILBB95, ILBB510 and ILBB592 were identified as Priestia megaterium, ILBB139 as Bacillus wiedmannii, ILBB44 as a member of a sister clade of B. pumilus, ILBB15 as Peribacillus butanolivorans and ILBB64 as Lysinibacillus sp. These strains were evaluated for their capacity to mineralize sodium phytate as organic P and solubilize inorganic P in liquid medium. These assays ranked ILBB15 and ILBB64 with the highest orthophosphate production from phytate. Rhizocompetence and plant growth promotion traits were evaluated in vitro and in silico. Finally, plant bioassays were conducted to assess the effect of the co-inoculation with rhizobial inoculants on nodulation, N and P nutrition. These bioassays showed that B. pumilus, ILBB44 and P. megaterium ILBB95 increased P-uptake in plants on the poor substrate of sand:vermiculite and also on a more fertile mix. Priestia megaterium ILBB592 increased nodulation and N content in plants on the sand:vermiculite:peat mixture. Peribacillus butanolivorans ILBB15 reduced plant growth and nutrition on both substrates. Genomes of ILBB95 and ILBB592 were characterized by genes related with plant growth and biofertilization, whereas ILBB15 was differentiated by genes related to bioremediation. Priestia megaterium ILBB592 is considered as nodule-enhancing rhizobacteria and together with ILBB95, can be envisaged as prospective PGPR with the capacity to exert positive effects on N and P nutrition of soybean plants.
Assuntos
Silicatos de Alumínio , Bacillus megaterium , Bacillus , Glycine max , Fósforo , Areia , Estudos Prospectivos , GenômicaRESUMO
Phosphorus (P) is naturally present in soils. However, urbanization can promote additional inputs of P into the soil that lead to saturation of the binding sites exceeding the maximum sorption capacity. Soils saturated with P act as important diffuse sources of pollution of water resources. The flow of P from the soil to aquatic ecosystems is an aggravating factor for water scarcity, especially in the semiarid region. Knowing phosphorus dynamics in the soil is essential to protect water quality and ensure its multiple uses. In this paper, a total of fifty soil samples, twenty-five from natural soils and twenty-five from urban soils, were evaluated for the effect of urbanization on P sorption characteristics and their relationship with the physical and chemical attributes of the soil. The soil samples were characterized physically and chemically, and the P sorption characteristics were obtained from the adjustment of Langmuir and Freundlich equations by nonlinear regression. Urbanization results in increased soil P saturation and reduced P sorption capacity. Our results show that the sandy texture of the soils studied had a standardizing effect on the soil's physical properties, maintaining, even after urbanization, the physical quality similar to natural soil. In contrast, pH (in water and KCl), base saturation, sodium saturation, potential acidity, exchangeable Al3+, exchangeable Mg2+, available P, and P-rem are valuable indicators in the segregation between natural and urban soils. The reduction of P sorption capacity in urban soils increases the risks related to P loads in aquatic ecosystems that experience urban expansion worldwide. These data serve as a basis for decision-making regarding the appropriate soil monitoring and management of urban expansion areas in watersheds to control P flow to aquatic systems.
Assuntos
Poluentes do Solo , Solo , Solo/química , Areia , Ecossistema , Fósforo/química , Urbanização , Qualidade da Água , Poluentes do Solo/análiseRESUMO
Establishing slash pine plantations is the primary method for restoring sandification land in the Houtian area of South China. However, the microbial variation pattern with increasing stand age remains unclear. In this study, we investigated microbial community structure and function in bare sandy land and four stand age gradients, exploring ecological processes that determine their assembly. We did not observe a significant increase in the absolute abundance of bacteria or fungi with stand age. Bacterial communities were dominated by Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria; the relative abundance of Chloroflexi significantly declined while Proteobacteria and Acidobacteria significantly increased with stand age. Fungal communities showed succession at the genus level, with Pisolithus most abundant in soils of younger stands (1- and 6-year-old). Turnover of fungal communities was primarily driven by stochastic processes; both deterministic and stochastic processes influenced the assembly of bacterial communities, with the relative importance of stochastic processes gradually increasing with stand age. Bacterial and fungal communities showed the strongest correlation with the diameter at breast height, followed by soil available phosphorus and water content. Notably, there was a significant increase in the relative abundance of functional groups involved in nitrogen fixation and uptake as stand age increased. Overall, this study highlights the important effects of slash pine stand age on microbial communities in sandy lands and suggests attention to the nitrogen and phosphorus requirements of slash pine plantations in the later stages of sandy management.
Assuntos
Microbiota , Pinus , Pinus/microbiologia , Areia , Microbiologia do Solo , Solo/química , Bactérias , China , FósforoRESUMO
The process of microbially induced carbonate precipitation (MICP) is known to effectively improve engineering properties of building materials and so does silk fibroin (SF). Thus, in this study, an attempt was taken to see the improvement in sand, that is, basic building material coupled with MICP and SF. Urease producing Bacillus megaterium was utilized for MICP in Nutri-Calci medium. To improve the strength of SF itself in bacterial solution, it was cross-linked with genipin at the optimized concentration of 3.12 mg/mL. The Fourier transform infrared (FTIR) spectra confirmed the crosslinking of SF with genipin in bacterial solution. In order to understand how such cross-linking can improve engineering properties, sand moulds of 50 mm3 dimension were prepared that resulted in 35% and 55% more compressive strength than the one prepared with bacterial solution with SF and bacterial solution only, respectively with higher calcite content in former one. The FTIR, SEM, x-ray powder diffraction spectrometry and x-ray photoelectron spectroscopy analyses confirmed higher biomineral precipitation in bacterial solution coupled with genipin cross-linked SF. As the process of MICP is proven to replace cement partially from concrete without negatively influence mechanical properties, SF cross-linked with genipin can provide additional significance in developing low-carbon cement-based composites.
Assuntos
Fibroínas , Fibroínas/química , Areia , Carbonato de Cálcio/química , Materiais de Construção , Precipitação QuímicaRESUMO
The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.