Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413638

RESUMO

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Assuntos
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospecção , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
2.
J Nat Med ; 78(2): 439-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351420

RESUMO

Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.


Assuntos
Antineoplásicos , Artemisininas , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemisininas/metabolismo , Rim/metabolismo , Rim/patologia , Estresse Oxidativo , Inflamação/metabolismo , Apoptose , Antineoplásicos/toxicidade
3.
J Med Chem ; 67(3): 2083-2094, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38287228

RESUMO

Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.


Assuntos
Artemisininas , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Artemisininas/metabolismo , Ciclo-Oxigenase 2 , Neoplasias Colorretais/tratamento farmacológico , Prostaglandinas
4.
Plant Commun ; 5(3): 100742, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37919898

RESUMO

We investigated the effects of graphene on the model herb Artemisia annua, which is renowned for producing artemisinin, a widely used pharmacological compound. Seedling growth and biomass were promoted when A. annua was cultivated with low concentrations of graphene, an effect which was attributed to a 1.4-fold increase in nitrogen uptake, a 15%-22% increase in chlorophyll fluorescence, and greater abundance of carbon cycling-related bacteria. Exposure to 10 or 20 mg/L graphene resulted in a âˆ¼60% increase in H2O2, and graphene could act as a catalyst accelerator, leading to a 9-fold increase in catalase (CAT) activity in vitro and thereby maintaining reactive oxygen species (ROS) homeostasis. Importantly, graphene exposure led to an 80% increase in the density of glandular secreting trichomes (GSTs), in which artemisinin is biosynthesized and stored. This contributed to a 5% increase in artemisinin content in mature leaves. Interestingly, expression of miR828 was reduced by both graphene and H2O2 treatments, resulting in induction of its target gene AaMYB17, a positive regulator of GST initiation. Subsequent molecular and genetic assays showed that graphene-induced H2O2 inhibits micro-RNA (miRNA) biogenesis through Dicers and regulates the miR828-AaMYB17 module, thus affecting GST density. Our results suggest that graphene may contribute to yield improvement in A. annua via dynamic physiological processes together with miRNA regulation, and it may thus represent a new cultivation strategy for increasing yield capacity through nanobiotechnology.


Assuntos
Artemisia annua , Artemisininas , Grafite , MicroRNAs , Fenômenos Fisiológicos , Plantas Medicinais , Artemisia annua/genética , Artemisia annua/metabolismo , Grafite/metabolismo , Grafite/farmacologia , Peróxido de Hidrogênio/metabolismo , Plantas Medicinais/genética , Artemisininas/metabolismo , Artemisininas/farmacologia
5.
Curr Microbiol ; 81(1): 4, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947887

RESUMO

The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.


Assuntos
Artemisia annua , Artemisininas , Malária , Plantas Medicinais , Endófitos/genética , Endófitos/metabolismo , Artemisininas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Fatores Socioeconômicos
6.
Funct Integr Genomics ; 23(2): 141, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37118364

RESUMO

Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate (AlPO4, AlP), using soluble monopotassium phosphate (KH2PO4, KP) as a control. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of A. annua. Conversely, LC-MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP. GH3, SAUR, CRE1, and PYL, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the majority of genes (ACAT, FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including GATA and MYB, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to hardly soluble phosphorus fertilizer.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/química , Artemisia annua/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Fosfatos/metabolismo , Análise de Sequência de RNA , Fósforo/metabolismo
7.
Horm Mol Biol Clin Investig ; 44(2): 207-214, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749578

RESUMO

OBJECTIVES: This in vivo study aimed to evaluate the effect of various concentrations of artemisinin (Art) alone or together with N-acetyl cysteine (NAC) on spermatological indices, antioxidant status, and histopathological parameters of testicular tissue in adult male mice. METHODS: Six groups of five healthy male mice (25-30 g) were randomly assigned to different experimental groups. These groups received DMSO and corn oil (0.1%) as an Art solvent (Control), 50 mg kg-1 Art (Art-50), 250 mg kg-1 Art (Art-250), 50 mg kg-1 Art + 150 mg kg-1 NAC (Art-50+NAC-150), 250 mg kg-1 Art + 150 mg kg-1 NAC (Art-250+NAC-150) and 150 mg kg-1 NAC (NAC-150) for a period of 7 days. Testes and epididymis were prepared to evaluate the malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), spermatological indices, and histological parameters. RESULTS: We showed that the high dose of Art (Art-250) significantly reduced the sperm count, motility, viability, and the activity of CAT and increased the levels of MDA compared to the control group. Also, the overdose of Art caused adverse changes in testicular tissue. Co-administration of NAC with Art (Art-250+NAC-150) corrected the adverse effects of Art. CONCLUSIONS: The current study reports that a high dose of Art affects, spermatological parameters, antioxidant/stress oxidative status of the male reproductive system, and NAC is capable neutralize all adverse effects caused by Art.


Assuntos
Antioxidantes , Artemisininas , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Testículo/metabolismo , Estresse Oxidativo , Sêmen/metabolismo , Espermatozoides/metabolismo , Glutationa/metabolismo , Artemisininas/efeitos adversos , Artemisininas/metabolismo
8.
Chemosphere ; 308(Pt 3): 136476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122740

RESUMO

Allelopathy, as environmental stress, plays a prominent role in stress ecotoxicity, and global warming directly increases freeze-thaw cycles (FTCs) frequency in the winter. Yet, the effect between FTCs environment and allelopathy stress is rarely known, and the interaction of allelopathy stresses lacks consideration. Here, we addressed interactions between artemisinin stress (AS) and A. trifida extract stress (AES) under Non-FTCs and FTCs environments. The results found that AS and AES had an antagonistic relation under Non-FTCs environment, while a strong synergism and cooperation under FTCs environment affect the growth and physiology in S. cereale seedlings. Besides, AS and AES under FTCs environment had more inhibition on the growth of roots and shoots, chlorophylls, photosynthetic parameters, and relative water content; while more promotion on malondialdehyde, soluble sugar, and soluble protein. Moreover, the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were increased by AS and AES, showing a good resistance of S. cereale seedlings to allelopathy stress, but FTCs environment significantly weakened this resistance. Thus, the allelopathic effect of AS and AES on S. cereale seedlings was significantly emphasized by FTCs environment.


Assuntos
Artemisininas , Plântula , Alelopatia , Antioxidantes/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Malondialdeído/metabolismo , Extratos Vegetais/farmacologia , Secale , Açúcares/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
9.
Plant Biotechnol J ; 19(7): 1412-1428, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539631

RESUMO

Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.


Assuntos
Artemisia annua , Artemisininas , Ácido Abscísico , Artemisia annua/genética , Artemisininas/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Biotechnol Appl Biochem ; 68(2): 338-344, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32339306

RESUMO

Artemisinin, an effective antimalarial compound, is isolated from the medicinal plant Artemisia annua L. However, because of the low content of artemisinin in A. annua, the demand of artemisinin exceeds supply. Previous studies show that the artemisinin biosynthesis is promoted by light in A. annua. Cryptochrome1 (CRY1) is involved in many processes in the light response. In this study, AaCRY1 was cloned from A. annua. Overexpressing AaCRY1 in Arabidopsis thaliana cry1 mutant resulted in blue-light-dependent short hypocotyl phenotype and short coleoptile under blue light. Yeast two-hybrid and subcellular colocalization showed that AaCRY1 interacted with AtCOP1 (ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1). Overexpression of AaCRY1 in transgenic A. annua increased the artemisinin content. When AaCRY1 was overexpressed in A. annua driven by the CYP71AV1 (cytochrome P450 dependent amorpha-4,11-diene 12-hydroxylase) promoter, the artemisinin content was 1.6 times higher than that of the control. Furthermore, we expressed the C terminal of AaCRY1(CCT) involved a GUS-CCT fusion protein in A. annua. The results showed that the artemisinin content was increased to 1.7- to 2.4-fold in GUS-CCT transgenic A. annua plants. These results demonstrate that overexpression of GUS-CCT is an effective strategy to increase artemisinin production in A. annua.


Assuntos
Artemisia annua , Artemisininas/metabolismo , Criptocromos , Lactonas/metabolismo , Plantas Geneticamente Modificadas , Artemisia annua/genética , Artemisia annua/metabolismo , Criptocromos/biossíntese , Criptocromos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
11.
Plant Physiol Biochem ; 156: 125-134, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32932206

RESUMO

One of the major abiotic stresses that cause environmental pollution is heavy metal stress. In the present investigation, copper (Cu) toxicity caused morphological and cellular damages to the Artemisia annua L. plants but supplementation of abscisic acid (ABA) ameliorated the damaging effect of Cu. Copper toxicity significantly reduced the shoot and root lengths; fresh and dry weights of shoot. However, exogenous application of ABA to Cu-treated plants significantly attenuated the damaging effects on plants caused by Cu toxicity. Copper stress also reduced the physiological and biochemical parameters, but ABA application ameliorated the negative effects of Cu in the affected plant. Accumulation of Cu in plant tissues significantly increased the membrane damage and oxidative enzyme activities such as catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD). Further, the impact of high concentration of Cu on density, area and ultrastructure of glandular trichomes and artemisinin content was studied. Moreover, the foliar application of ABA improved the area, density of glandular trichomes and secured the plant cells from Cu toxicity. Therefore, this investigation indicated that the exogenous application of ABA protects A. annua plant by increasing antioxidant enzymes activity, which helps in maintaining cell integrity of leaves and results in increased artemisinin production.


Assuntos
Ácido Abscísico/farmacologia , Artemisia annua/metabolismo , Artemisininas/metabolismo , Cobre/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tricomas/metabolismo , Artemisia annua/efeitos dos fármacos , Homeostase , Folhas de Planta
12.
Ecotoxicol Environ Saf ; 206: 111202, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889311

RESUMO

Aim of the current study was to investigate the effect of exogenously inoculated root endophytic fungus, Piriformospora indica, on molecular, biochemical, morphological and physiological parameters of Artemisia annua L. treated with different concentrations (0, 50, 100 and 150 µmol/L) of arsenic (As) stress. As was significantly accumulated in the roots than shoots of P. indica-inoculated plants. As accumulation and immobilization in the roots is directly associated with the successful fungal colonization that restricts most of As as compared to the aerial parts. A total of 4.1, 11.2 and 25.6 mg/kg dry weight of As was accumulated in the roots of inoculated plants supplemented with 50, 100 and 150 µmol/L of As, respectively as shown by atomic absorption spectroscopy. P. indica showed significant tolerance in vitro to As toxicity even at high concentration. Furthermore, flavonoids, artemisinin and overall biomass were significantly increased in inoculated-stressed plants. Superoxide dismutase and peroxidase activities were increased 1.6 and 1.2 fold, respectively under 150 µmol/L stress in P. indica-colonized plants. Similar trend was followed by ascorbate peroxidase, catalase and glutathione reductase. Like that, phenolic acid and phenolic compounds showed a significant increase in colonized plants as compared to their respective control/un-colonize stressed plants. The real-time PCR revealed that transcriptional levels of artemisinin biosynthesis genes, isoprenoids, terpenes, flavonoids biosynthetic pathway genes and signal molecules were prominently enhanced in inoculated stressed plants than un-inoculated stressed plants.


Assuntos
Arseniatos/metabolismo , Artemisia annua/metabolismo , Basidiomycota/metabolismo , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Arseniatos/toxicidade , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Artemisia annua/microbiologia , Artemisininas/metabolismo , Ascorbato Peroxidases/metabolismo , Basidiomycota/crescimento & desenvolvimento , Biomassa , Relação Dose-Resposta a Droga , Modelos Teóricos , Pressão Osmótica/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Transcrição Gênica/efeitos dos fármacos
13.
Biomolecules ; 10(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046156

RESUMO

Artemisia annua L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of A. annua (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC50 values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Artemisininas/administração & dosagem , Disponibilidade Biológica , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malária/tratamento farmacológico , Malária/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Genes (Basel) ; 11(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093127

RESUMO

Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for plant development, defense, and metabolic homeostasis. AaCOI1 from Artemisia annua, homologous to Arabidopsis AtCOI1, encodes a F-box protein located in the nuclei. Expressional profiles of the AaCOI1 in the root, stem, leaves, and inflorescence was investigated. The mRNA abundance of AaCOI1 was the highest in inflorescence, followed by in the leaves. Upon mechanical wounding or MeJA treatment, expression of AaCOI1 was upregulated after 6 h. When ectopically expressed, driven by the native promoter from Arabidopsis thaliana, AaCOI1 could partially complement the JA sensitivity and defense responses, but fully complemented the fertility, and the JA-induced anthocyanin accumulation in a coi1-16 loss-of-function mutant. Our study identifies the paralog of AtCOI1 in Artemisia annua, and revealed its implications in development, hormone signaling, defense, and metabolism. The results provide insight into JA perception in Artemisia annua, and pave the way for novel molecular breeding strategies in the canonical herbs to manipulate the anabolism of pharmaceutic compounds on the phytohormonal level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Artemisininas/metabolismo , Ciclopentanos/metabolismo , Proteínas F-Box , Indenos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais
15.
Oxid Med Cell Longev ; 2020: 8810785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425217

RESUMO

Ferroptosis is an atypical form of regulated cell death, which is different from apoptosis, necrosis, pyroptosis, and autophagy. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. The sensitivity of ferroptosis is tightly regulated by a series of biological processes, the metabolism of iron, amino acids, and polyunsaturated fatty acids, and the interaction of glutathione (GSH), NADPH, coenzyme Q10 (CoQ10), and phospholipids. Elevated oxidative stress (ROS) level is a hallmark of cancer, and ferroptosis serves as a link between nutrition metabolism and redox biology. Targeting ferroptosis may be an effective and selective way for cancer therapy. The underlying molecular mechanism of ferroptosis occurrence is still not enough. This review will briefly summarize the process of ferroptosis and introduce critical molecules in the ferroptotic cascade. Furthermore, we reviewed the occurrence and regulation of reduction-oxidation (redox) for ferroptosis in cancer metabolism. The role of the tumor suppressor and the epigenetic regulator in tumor cell ferroptosis will also be described. Finally, old drugs that can be repurposed to induce ferroptosis will be characterized, aiming for drug repurposing and novel drug combinations for cancer therapy more efficiently and economically.


Assuntos
Ferroptose , Neoplasias/metabolismo , Estresse Oxidativo , Acetaminofen/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose , Artemisininas/metabolismo , Auranofina/farmacologia , Morte Celular , Cisplatino/farmacologia , Epigênese Genética , Ácidos Graxos/metabolismo , Haloperidol/farmacologia , Humanos , Indóis/administração & dosagem , Ferro/metabolismo , Lapatinib/administração & dosagem , Ácido Mevalônico/metabolismo , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo , Quinolinas/farmacologia , Espécies Reativas de Oxigênio , Sorafenibe/farmacologia , Compostos de Espiro/administração & dosagem , Sulfassalazina/farmacologia , Trigonella/metabolismo
16.
Sci China Life Sci ; 63(5): 737-749, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31290095

RESUMO

Artemisia annua is an anti-fever herbal medicine first described in traditional Chinese medicine 1,000 years ago. Artemisinin, the extract of A. annua, and its derivatives (dihydroartemisinin (DHA), artemether, and artesunate) have been used for the treatment of malaria with substantial efficacy. Recently, DHA has also been tested for the treatment of lupus erythematosus, indicating that it may function to balance the immune response in immunocompromised individuals. In the present study, the regulatory effect of artemisinin on the murine immune system was systematically investigated in mice infected with two different protozoan parasites (Toxoplasma gondii and Plasmodium berghei). Our results revealed that the mouse spleen index significantly increased (spleen enlargement) in the healthy mice after DHA administration primarily due to the generation of an extra number of lymphocytes and CD8+ T lymphocytes in both the spleen and circulation. DHA could increase the proportion of T helper cells and CD8+ T cells, as well as decrease the number of splenic and circulatory B cells. Further, DHA could reduce the production of proinflammatory cytokines. Our study revealed that apart from their anti-parasitic activity, artemisinin and its derivatives can also actively modulate the immune system to directly benefit the host.


Assuntos
Antimaláricos/química , Artemisininas/química , Medicamentos de Ervas Chinesas/química , Sistema Imunitário/efeitos dos fármacos , Malária/tratamento farmacológico , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Artemisininas/metabolismo , Artemisininas/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/efeitos dos fármacos , Baço/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos
17.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4169-4176, 2018 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-30486546

RESUMO

Artemisia annua also known as Qinghao, is a kind of traditional Chinese medicine. Its active ingredient is artemisinin, a sesquiterpene lactone compound with a peroxy bridging group structure. A. annua is an effective antimalarial drug. Artemisinin, a secondary metabolite in A. annua, can be induced by many physical and chemical factors, such as salinity, moisture, light, and plant hormones. Temperature, as an important growth factor, also has a great influence on the synthesis of artemisinin. This article aims to study the effect of high temperature on inducing artemisinin biosynthesis in A. annua. The A. annua seedlings were placed at 25, 40 °C, and the samples were taken after 0, 3, 12 and 36 h. The content of artemisinin in each sample was determined by liquid chromatography-mass spectrometry. Total RNA was extracted from the samples, and then transcriptome sequencing and real-time fluorescence quantitative PCR were used to quantitatively analyze the expression of the key enzyme genes in artemisinin synthesis pathway and competition pathway. The results showed that artemisinin content was increased by 20%, 42% and 68% after 3, 12, 36 h of treatment at 40 °C. The expression levels of FDS, ALDH1, CYP71AV1 and ADS were up-regulated by 4.3, 3.3, 2.5, 1.9 times, and the expression levels of SQS and BPS were down-regulated by 37% and 90% respectively. In summary, high temperature can promote the biosynthesis of artemisinin by promoting the expression of synthetase genes in artemisinin synthesis pathway and inhibiting the expression of synthetase genes in artemisinin-competition pathway.


Assuntos
Antimaláricos/metabolismo , Artemisia annua/metabolismo , Artemisininas/metabolismo , Temperatura , Vias Biossintéticas , Plantas Medicinais/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3041-3050, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200697

RESUMO

Malaria is one of the three most deadly diseases in the world. Artemisinin is the first line and effective drug for treating malaria, and only can be extracted from Artemisia annua. Therefore, it is of great significance to cultivate new varieties of A. annua with high artemisinin content. Based on the germplasm bank and the whole genome, transcriptome and genetic map, the authors can explore high-quality genes, stress-resistant genes and genetic markers which have been used for rapid breeding of superior varieties of A. annua. So these methods of molecular breeding will become the main breeding direction of A. annua in the future. The breeding times of new varieties of A. annua can be shortened with molecular breeding technology. Based on the genetic background and the current situation of molecular breeding of A. annua, the strategy and technical route of molecular breeding were discussed and worked out in this paper, which provided a guidance and scientific reference for molecular breeding of A. annua in the future.


Assuntos
Artemisia annua/genética , Melhoramento Vegetal , Antimaláricos/metabolismo , Artemisininas/metabolismo , Mapeamento Cromossômico , Embaralhamento de DNA , Genes de Plantas , Marcadores Genéticos , Transcriptoma
19.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3064-3069, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200700

RESUMO

Malaria is a worldwide epidemic that extensively endangers health of human beings. Before artemisinin was developed to treat with malaria, about 400 million person-time of malaria infections and at least 1 million deaths from malaria were reported in the world every year. Thus malaria has been listed as one of the world's three major death diseases by the WHO. The discovery of artemisinin by Chinese scientists created a novel therapy approach to treat with malaria effectively. Amorpha-4,11-diene oxidase is a plant cytochrome P450 enzymes, i.e. CYP71AV1, which catalyzes each of the three oxidation steps from amorpha-4,11-diene to form artemisinic acid, the intermediate of artemisinin. CYP71AV1 is the key enzyme in artemisinin biosynthesis. By constructing the prokaryotic expression vector pCWOri(+)-CYP71AV1, functional expression and purification of complementary CYP71AV1 were performed. The enzyme activity was monitored by CO differential spectrum assay and the heme-based activity analysis. The preliminary crystallization condition was obtained by crystallization screening. These studies provide basis for resolving the crystal structure of CYP71AV1 and for producing artemisinin in large scale through biosynthetic biology approach, and will provide references for over expression, purification and crystallization of other plant P450 enzymes.


Assuntos
Artemisia annua/enzimologia , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/genética , Artemisia annua/genética , Cristalização , Oxirredução
20.
Sci Rep ; 8(1): 12659, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139985

RESUMO

Artemisinin, an effective anti-malarial drug is synthesized in the specialized 10-celled biseriate glandular trichomes of some Artemisia species. In order to have an insight into artemisinin biosynthesis in species other than A. annua, five species with different artemisinin contents were investigated for the expression of key genes that influence artemisinin content. The least relative expression of the examined terpene synthase genes accompanied with very low glandular trichome density (4 No. mm-2) and absence of artemisinin content in A. khorassanica (S2) underscored the vast metabolic capacity of glandular trichomes. A. deserti (S4) with artemisinin content of 5.13 mg g-1 DW had a very high expression of Aa-ALDH1 and Aa-CYP71AV1 and low expression of Aa-DBR2. It is possible to develop plants with high artemisinin synthesis ability by downregulating Aa-ORA in S4, which may result in the reduction of Aa-ALDH1 and Aa-CYP71AV1 genes expression and effectively change the metabolic flux to favor more of artemisinin production than artemisinic acid. Based on the results, the Aa-ABCG6 transporter may be involved in trichome development. S4 had high transcript levels and larger glandular trichomes (3.46 fold) than A. annua found in Iran (S1), which may be due to the presence of more 2C-DNA (3.48 fold) in S4 than S1.


Assuntos
Artemisia/metabolismo , Artemisininas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Antimaláricos/metabolismo , Artemisia/enzimologia , Artemisia/genética , Artemisia annua/enzimologia , Artemisia annua/genética , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tricomas/genética , Tricomas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA