Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
2.
Phytomedicine ; 126: 155382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382280

RESUMO

BACKGROUND: Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM: This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS: C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS: After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION: Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Camundongos , Animais , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Artesunato/farmacologia , Artesunato/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Hiperglicemia/metabolismo , Camundongos Endogâmicos , Metaboloma
3.
Phytomedicine ; 123: 155274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142662

RESUMO

BACKGROUND: Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE: As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN: Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY: 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS: Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS: Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Artesunato/farmacologia , Artesunato/uso terapêutico , Dacarbazina , Estudos Retrospectivos , Senoterapia , Recidiva Local de Neoplasia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , DNA/uso terapêutico
4.
Sci Rep ; 13(1): 22383, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104159

RESUMO

Artesunate is a derivative of artemisinin, an active compound isolated from Artemisia annua which has been used in Traditional Chinese Medicine and to treat malaria worldwide. Artemisinin derivatives have exhibited anti-cancer activity against both solid tumors and leukemia. The direct target(s) of artesunate are controversial; although, heme-bound proteins in the mitochondria have been implicated. We utilized computational modeling to calculate the predicted binding score of artesunate with heme-bound mitochondrial proteins and identified cytochrome c as potential artesunate target. UV-visible spectroscopy showed changes in the absorbance spectrum, and thus protein structure, when cytochrome c was incubated with artesunate. Artesunate induces apoptosis, disrupts mitochondrial membrane potential, and is antagonized by methazolamide in pediatric AML cells indicating a probable mechanism of action involving cytochrome c. We utilized a multi-disciplinary approach to show that artesunate can interact with and is dependent on cytochrome c release to induce cell death in pediatric AML cell lines.


Assuntos
Antimaláricos , Artemisininas , Leucemia Mieloide Aguda , Criança , Humanos , Artesunato/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Citocromos c , Artemisininas/farmacologia , Heme , Leucemia Mieloide Aguda/tratamento farmacológico
5.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1343-1351, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005818

RESUMO

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Artrite Experimental/tratamento farmacológico , Artesunato/farmacologia , Artesunato/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Transcriptoma , Farmacologia em Rede , Osteoclastos , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Citocinas/uso terapêutico
6.
Clin Transl Oncol ; 25(8): 2427-2437, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36952106

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a highly heterogeneous hematological cancer. The current diagnosis and therapy model of AML has gradually shifted to personalization and accuracy. Artesunate, a member of the artemisinin family, has anti-tumor impacts on AML. This research uses network pharmacology and molecular docking to anticipate artesunate potential mechanisms of action in the therapy of AML. METHODS: Screening the action targets of artesunate through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PubChem, and Swiss Target Prediction databases; The databases of Online Mendelian Inheritance in Man (OMIM), Disgenet, GeneCards, and Drugbank were utilized to identify target genes of AML, and an effective target of artesunate for AML treatment was obtained through cross-analysis. Protein-protein interaction (PPI) networks are built on the Cytoscape platform. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the relevant targets using R software. Finally, using molecular docking technology and Pymol, we performed verification of the effects of active components and essential targets. RESULTS: Artesunate 30 effective targets for treating AML include CASP3, EGFR, MAPK1, and STAT3, four targeted genes that may have a crucial function in disease management. The virus infection-related pathway (HeptatisB (HBV), Human papillomavirus (HPV), Epstein-Barr virus (EBV) infection and etc.), FoxO, viral carcinogenesis, and proteoglycans in cancer signaling pathways have all been hypothesized to be involved in the action mechanism of GO, which is enriched in 2044 biological processes, 125 molecular functions, 209 cellular components, and 106 KEGG pathways. Molecular docking findings revealed that artesunate was critically important in the therapy of AML due to its high affinity for the four primary disease targets. Molecular docking with a low binding energy yields helpful information for developing medicines against AML. CONCLUSIONS: Consequently, artesunate may play a role in multi-targeted, multi-signaling pathways in treating AML, suggesting that artesunate may have therapeutic potential for AML.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Vírus Epstein-Barr , Leucemia Mieloide Aguda , Humanos , Simulação de Acoplamento Molecular , Artesunato/uso terapêutico , Farmacologia em Rede , Herpesvirus Humano 4 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Bases de Dados Genéticas
7.
Anticancer Res ; 43(3): 1175-1184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854526

RESUMO

BACKGROUND/AIM: Urothelial carcinoma (UC) may arise from the urothelium of the upper tract and the bladder. Cisplatin-based therapy remains the gold standard for UC treatment. The poor 5-year survival rate of UC patients creates an urgent need to develop new drugs for advanced UC therapy. Artesunate (ART), a traditional Chinese medicine for treating malaria, is a potential anticancer agent, but its antigrowth effects on upper tract and bladder UC have not been investigated. MATERIALS AND METHODS: The antigrowth effect of ART in HT 1376 (bladder UC cells) and BFTC 909 [upper tract urothelial carcinoma (UTUC) cells] was determined by the CCK-8 assay. Flow cytometric analysis was used to evaluate the cell cycle distribution and apoptosis. The cell cycle, apoptosis, and autophagy-related protein expression were analyzed by western blotting. The efficacy of combination treatment with cisplatin was determined by the Calcusyn software. RESULTS: ART induced HT 1376 and BFTC 909 cell death in a concentration- and time-dependent manner, inducing G2/M cell-cycle arrest. ART induced apoptosis and redox imbalance in HT 1376 and BFTC 909 cells. Application of the reactive oxygen species (ROS) scavenger, N-acetyl-L-cysteine (NAC), attenuated cell death in ART-treated UC cells. BFTC 909 cells show a better response after ART treatment. CONCLUSION: ART may be a candidate drug for treating UTUC and bladder UC while increasing the therapeutic effect of cisplatin.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Carcinoma de Células de Transição/tratamento farmacológico , Cisplatino/farmacologia , Artesunato/farmacologia , Bexiga Urinária
8.
Acta Biomater ; 158: 686-697, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623782

RESUMO

Selectively generating active free radical (AFR) in tumor microenvironment (TME) can promote irreversible oxidation of biomolecules and damage tumor cells, resulting in effective tumor inhibition. However, therapeutic efficacy of AFR-based tumor suppression approaches is often limited by insufficient amount of H2O2 or O2 within TME. To overcome this obstacle, we design a pH/photothermal dual responsive nanosystem (PFeSA@AS) for combined photothermal and nanocatalytic therapy in the near-infrared biowindow. Here the Fe single-atom dispersed N, S-doped carbon nanosheets (FeSA) nanozyme is dispersed by phospholipid-polyethylene glycol-amine (DSPE-PEG-NH2), and further loads artesunate (AS) via an amide reaction. Upon 808-nm laser irradiation in TME, the AS is released and further be catalyzed by the FeSA nanozyme to produce cytotoxic C-centered AFRs, and further be accelerated due to the photothermal conversion performance of FeSA (23.35%). The nanocatalytic process of FeSA nanozyme is realized by density functional theory (DFT). The tumor inhibition rates of a CT26 xenograft model is 92% through a photothermal-enhanced nanocatalytic synergistic therapy, and negligible systematic toxicity is observed. This work offers a potential paradigm of multifunctional single atomic catalysts (SACs) for enhancing tumor nanocatalytic therapy. STATEMENT OF SIGNIFICANCE: We designed a pH/photothermal dual responsive nanosystem (PFeSA@AS) for nanocatalytic therapy: (1) the nanosystem responsively releases AS under 808-nm laser irradiation in TME; (2) FeSA in the nanosystem can act as heme mimetic to convert AS into high cytotoxic C-centered free radicals for nanocatalytic therapy; (3) the photothermal conversion performance of FeSA further enhances the catalytic process to yield abundant AFR. Both in vitro and in vivo results demonstrate that this nanosystem can efficiently inhibit tumor growth through a photothermal-enhanced nanocatalytic synergistic therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Fototerapia , Linhagem Celular Tumoral , Artesunato/farmacologia , Peróxido de Hidrogênio/farmacologia , Catálise , Microambiente Tumoral
9.
Biomed Res Int ; 2022: 9202128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277879

RESUMO

Chronic liver disease(CLD) is a slow-developing and long-term disease that can cause serious damage to the liver. Thus far, it has been associated with viral hepatitis, non-alcoholic fatty liver disease(NAFLD), alcoholic liver disease(ALD), hepatic fibrosis(HF), liver cirrhosis (LC), and liver cancer. Qinghao Biejia Decoction (QBD) is a classic ancient Chinese herbal prescription with strong immune-enhancing, anti-inflammatory, and anti-tumor effects. In this study, we used a network pharmacology approach to investigate the molecular mechanisms of QBD in the inflammation-carcinoma transformation process of chronic liver disease. Two key drug targets, MAPK1 and PIK3CA, were screened using network pharmacology and molecular docking techniques, revealing dihydroartemisinin, artesunate, 12-O-Nicotinoylisolineolone, caffeic acid, and diincarvilone A as active ingredients involved in QBD mechanisms. The main signaling pathways involved were the PI3K-AKT signaling pathway and MAPK signaling pathway. In summary, our results indicated that QBD affects the inflammatory transformation of chronic liver disease through MAPK1 and PIK3CA and signaling pathways MAPK and PI3K/AKT. These data provide research direction for investigating the mechanisms underlying the inflammation-carcinoma transformation process in QBD for chronic liver disease.


Assuntos
Artemisia annua , Carcinoma , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artemisia annua/metabolismo , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Artesunato , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática , Inflamação/tratamento farmacológico
10.
Small Methods ; 6(9): e2200379, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978419

RESUMO

Chemodynamic therapy (CDT) is an effective cancer treatment that uses Fenton reaction to induce cancer cell death. Current clinical applications of CDT are limited by the dependency of external supply of metal ions as well as low catalytic efficiency. Here, a highly efficient metal-free CDT by using endoperoxide bridge-containing artesunate as free radical-generating substance is developed. A Pt(IV) prodrug (A-Pt) containing two artesunate molecules in the axial direction is synthesized, which can be decomposed into cisplatin and artesunate under reducing intracellular environment in tumor cells. To improve the catalytic efficiency for Fenton reaction, a near-infrared-II (NIR-II) photothermal agent IR1048 is incorporated to achieve a mild hyperthermia effect. By encapsulating the A-Pt and IR1048 with human serum albumin, A-Pt-IR NP are formulated for efficient drug delivery in 4T1 tumor-bearing mice. NIR-II light irradiation of A-Pt-IR NP treated mice show accelerated Fenton reaction. In addition, A-Pt-IR NP could also induce strong immunogenic cell death, which effectively reverses the immunosuppressive tumor microenvironment, and augments antitumor immunity. This study demonstrates that A-Pt-IR NP are potent biodegradable NIR-II active chemotherapy/CDT nanomedicine for clinical translation.


Assuntos
Artemisininas , Hipertermia Induzida , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Cisplatino/uso terapêutico , Humanos , Imunoterapia , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Albumina Sérica Humana/uso terapêutico , Microambiente Tumoral
11.
Phytomedicine ; 104: 154259, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849970

RESUMO

BACKGROUND: Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE: This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN: This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS: Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS: Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.


Assuntos
Antimaláricos , Asma , Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Fibrose , Humanos , Lesão Pulmonar/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
12.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2698-2704, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718489

RESUMO

This study aimed to explore the effect of artesunate(ARS) on bone destruction in rheumatoid arthritis(RA) based on the aryl hydrocarbon receptor(AhR)/AhR nucleart ranslocator(ARNT)/NAD(P)H quinone dehydrogenase 1(NQO1) signaling pathway. Macrophage-colony stimulating factor(M-CSF) and receptor activator of nuclear factor-κB(RANKL) were used to induce the differentiation of primary bone marrow-derived mouse macrophages into osteoclasts. After intervention with ARS(0.2, 0.4, and 0.8 µmol·L~(-1)), the formation and differentiation of osteoclasts were observed by tartrate-resistant acid phosphatase(TRAP) and F-actin staining. The protein expression levels of AhR and NQO1 were detected by Western blot, and their distribution in osteoclasts was observed by immunofluorescence localization. Simultaneously, the collagen induced arthritis(CIA) rat model was established using type Ⅱ bovine collagen emulsion and then treated with ARS(7.5, 15, and 30 mg·kg~(-1)) by gavage for 30 days. Following the observation of spinal cord and bone destruction in CIA rats by Masson staining, the expression of AhR and ARNT in rat knee joint tissue was measured by immunohistochemistry and the NQO1 protein expression in the knee joint tissue by Western blot. The results showed that a large number of TRAP-positive cells were present in RANKL-induced rats. Compared with the RANKL-induced group, ARS(0.2, 0.4, and 0.8 µmol·L~(-1)) inhibited the number of TRAP-positive cells in a dose-dependent manner. F-actin staining results showed that the inhibition of F-actin formation was enhanced with the increase in ARS dose. As revealed by Western blot and immunofluorescence assay, ARS significantly promoted the expression of AhR and its transfer to the nucleus, thereby activating the protein expression of downstream ARNT and antioxidant enzyme NQO1. At the same time, the CIA rat model was successfully established. Masson staining revealed serious joint destruction in the model group, manifested by the failed staining of surface cartilage, disordered arrangement of collagen fibers, and unclear boundaries of cartilage and bone. The positive drug and ARS at different doses all improved cartilage and bone destruction to varying degrees, with the best efficacy detected in the high-dose ARS group. According to immunohistochemistry, ARS promoted AhR and ARNT protein expression in knee cartilage and bone of CIA rats and also NQO1 protein expression in rat knee and ankle joint tissues. In conclusion, ARS inhibited osteoclast differentiation by activating the AhR/ARNT/NQO1 signaling pathway, thus alleviating RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Actinas/metabolismo , Animais , Artesunato/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/farmacologia , Bovinos , Colágeno Tipo II/metabolismo , Camundongos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Osteoclastos , Ratos , Transdução de Sinais
13.
J Clin Pharmacol ; 62(10): 1197-1205, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543380

RESUMO

Artemisinin is an antimalarial compound derived from the plant Artemisia annua L., also known as sweet wormwood. According to the World Health Organization, artemisinin-based combination therapy (ACT) is an essential treatment for malaria, specifically Plasmodium falciparum, which accounts for most malaria-related mortality. ACTs used to treat uncomplicated malaria include artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, artesunate-sulphadoxine-pyrimethamine, and dihydroartemisinin-piperaquine. Although the mechanism of action and clinical capabilities of artemisinin in malaria treatment are widely known, more information on the potential for drug interactions needs to be further investigated. Some studies show pharmacokinetic and pharmacodynamic drug interactions with HIV antiviral treatment but few studies have been conducted on most other drug classes. Based on known genotypes of cytochrome P450 (CYP) enzymes, CYP2B6 and CYP3A are primarily involved in the metabolism of artemisinin and its derivatives. Reduced functions in these enzymes can lead to subtherapeutic concentrations of the active metabolite, dihydroartemisinin, that may cause treatment failure, which has been shown in some studies with cardiovascular, antibiotic, and antiparasitic drugs. Although the clinical importance remains unclear to date, clinicians should be aware of potential drug-drug interactions and monitor patients on ACT closely.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Combinação de Medicamentos , Interações Medicamentosas , Quimioterapia Combinada , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico
14.
Acta Biomater ; 145: 135-145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381398

RESUMO

Artesunate (AS), the first-line treatment of malaria with a satisfactory safety profile, has been repurposed as a potential anticancer candidate as it mainly generates reactive oxygen species (ROS) through its intrinsic endoperoxide bridge reacting with ferrous-based catalysts to suppress cancer cell growth. However, further clinical translation of AS is hindered by the attenuated anticancer efficacy due to insufficient ROS generation. Herein, we rationally integrated hydrophobic-modified AS (hAS) with biomimetic polydopamine (PDA) and biomineral calcium carbonate to fabricate high AS-loaded nanomedicine (Ca-PDA/hAS@PEG) for cancer chemo-photothermal therapy, which exerted anticancer effects in the following ways: (1) the heat was generated when PDA was irradiated by near-infrared (NIR) light for photothermal therapy. Meanwhile, the increased temperature accelerated the production of ROS from hAS, thus enhancing the anticancer efficacy of hAS-based chemotherapy; (2) hAS-mediated chemotherapy boosted the cancer inhibition effect of photothermal therapy by arousing the intracellular ROS levels in the presence of endogenous ferrous ions and sensitizing cancer cells to thermal ablation; (3) the integration of calcium carbonate into the nanoparticle facilitated the pH-responsive drug release for precise treatment. Such hybrid nanoparticles exhibited a combinational antitumor effect of photothermal therapy and chemotherapy in vivo with no systemic toxicity. Taken together, our work presents a facile strategy to improve the anticancer efficacy of AS by combining chemical modification and photothermal therapy-assisted endoperoxide bridge cleavage, which may offer opportunities to pave the way for clinical translation of AS-based nanomedicines. STATEMENT OF SIGNIFICANCE: The clinical translation of artesunate (AS) is hindered by the attenuated anticancer efficacy due to insufficient ROS generation. Herein, we rationally integrated hydrophobic-modified AS (hAS) with biomimetic polydopamine (PDA) and biomineral calcium carbonate to fabricate high AS-loaded nanomedicine (Ca-PDA/hAS@PEG) for improved cancer chemo-photothermal therapy. The heat generated from PDA in response to near-infrared light irradiation could locally ablate tumor as well as accelerate the production of ROS by hAS, thus enhancing the anticancer efficacy of hAS-based chemotherapy. On the other hand, hAS-based chemotherapy amplified the intracellular oxidative stress, sensitizing cancer cells to thermal ablation. Our work presents a facile strategy to improve the anticancer efficacy of AS by combining chemical modification and photothermal therapy-assisted endoperoxide bridge cleavage.


Assuntos
Nanopartículas , Neoplasias , Artesunato/farmacologia , Artesunato/uso terapêutico , Carbonato de Cálcio/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Indóis , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica , Polímeros , Espécies Reativas de Oxigênio
16.
Comput Math Methods Med ; 2022: 3976062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590764

RESUMO

Objective: This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA), artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and molecular docking. Methods: The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover, molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed. Results: A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3, MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common anti-OP mechanisms of five molecules. Conclusion: ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling pathways.


Assuntos
Artemisininas , Medicamentos de Ervas Chinesas , Proteína Quinase 14 Ativada por Mitógeno , Osteoporose , Humanos , Simulação de Acoplamento Molecular , Caspase 3 , Interleucina-17 , Farmacologia em Rede , Prolactina , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter , Artesunato/farmacologia , Osteoporose/tratamento farmacológico , Receptores ErbB
17.
Zhonghua Gan Zang Bing Za Zhi ; 30(1): 45-51, 2022 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-33626860

RESUMO

Objective: To compare the effects of artesunate (Art) and fuzheng huayu decoction on mitochondrial autophagy in the treatment of schistosomiasis liver fibrosis. Methods: Eighty C57BL/6 female mice were randomly divided into healthy control group, infection group, Art treatment group and Fuzheng Huayu Decoction treatment group, with 20 mice in each group. Mice in the infection group and treatment group were infected with 16 Schistosoma japonicum cercariae. After 6 weeks, praziquantel (300 mg/kg) was used for 2 days to kill the worms. The Art treatment group was treated with intraperitoneal injection of 100 mg/kg/day, while the Fuzheng Huayu Decoction treatment group was fed 16g of fuzheng huayu decoction per 1kg per day. After 6 weeks, fresh liver tissues of the four groups were collected. Masson staining and Western blot were used to observe the succinate dehydrogenase subunit A (SDHA) and malate dehydrogenase (MDH2), citrate synthase (CS), ketoglutarate dehydrogenase (OGDH), and target of rapamycin 1 (mTORC1) pathway involved in mitochondrial tricarboxylic acid cycle in liver tissues. The relative expression levels of adenylate activated protein kinase (AMPK) and mitochondrial autophagy pathway kinase (PINK1) were detected. Liver tissue samples were extracted from each group to detect the mitochondrial oxygen consumption rate. Two-way ANOVA was used to compare the significance and difference between two sets of samples. Results: Masson staining showed that the infection group mice had significantly higher liver fibrosis area than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group mice had lower liver fibrosis area than the infection group. Western blot analysis showed that the infection group (0.82 ± 0.05) had significantly lower relative expression of SDHA protein than the healthy control group (1.00 ± 0.05) (t = 11.23, P = 0.0035), while the Art treatment group (0.73 ± 0.05) had significantly higher relative expression of SDHA protein than the infection group (t = 10.79, P = 0.0073). However, there was no significant change in Fuzheng Huayu Decoction treatment group (0.98±0.05) (t = 1.925, P = 0.1266). The relative expression of p-AMPK protein was significantly higher in the infection group (1.15 ±0.05) than in the healthy control group (0.98 ± 0.07, t = 12.18, P = 0.0029), and the expression of p-AMPK in the Art treatment group (0.50 ± 0.05) was significantly lower than the infection group (t = 11.78, P = 0.0032). The relative protein expression of AMPK was significantly lower in the infection group (0.80 ± 0.05) than in the healthy control group (1.00 ± 0.05, t = 10.53, P = 0.0046). The expression of AMPK was significantly lower in the Art treatment group (0.54 ± 0.05) than in the infection group (T = 13.98, P = 0.0036). The relative expression of p-mTORC1 protein (0.93 ± 0.08) was not significantly different in the infection group than in the healthy control group (t = 2.28, P = 0.065), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1 protein than the infection group (t = 10.58, P = 0.029). The expression of p-mTORC1/ m-TORC1 was not significantly different in the infection group (0.98 ± 0.03) than in the healthy control group (0.97 ± 0.03, t = 0.98, P = 0.085), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1/ m-TORC1 than the infection group (t = 14.58, P = 0. 009). The relative protein expression of PINK1 was significantly lower in the infection group (0.55 ± 0.05) than in the healthy control group (1.00 ± 0.03, t = 13.49, P = 0.0011), while the Art treatment group (1.21 ± 0.05, t = 9.98, P = 0.0046) and Fuzheng Huayu Decoction treatment group (1.31 ±0.35, t = 6.98, P = 0.027) had significantly higher relative protein expression of PINK1 than the infection group. Mitochondrial function tests showed that after adding substrate complex II, the oxygen consumption of the infection group was lower than the healthy control group, while the Art treatment group and the Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. The oxygen consumption was significantly lower after adding the substrate complex III in the infection group than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. Conclusion: Art can alleviate schistosomiasis liver fibrosis by inhibiting AMPK/mTORC1 signaling pathway activity and enhancing mitochondrial oxygen consumption, autophagy and SDHA expression.


Assuntos
Medicamentos de Ervas Chinesas , Esquistossomose , Animais , Artesunato , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Cirrose Hepática/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias
18.
Int Immunopharmacol ; 102: 108413, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34891003

RESUMO

OBJECT: Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS: ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS: Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION: These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.


Assuntos
Artesunato/uso terapêutico , Aterosclerose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Polaridade Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
19.
Chinese Journal of Hepatology ; (12): 45-51, 2022.
Artigo em Chinês | WPRIM | ID: wpr-935901

RESUMO

Objective: To compare the effects of artesunate (Art) and fuzheng huayu decoction on mitochondrial autophagy in the treatment of schistosomiasis liver fibrosis. Methods: Eighty C57BL/6 female mice were randomly divided into healthy control group, infection group, Art treatment group and Fuzheng Huayu Decoction treatment group, with 20 mice in each group. Mice in the infection group and treatment group were infected with 16 Schistosoma japonicum cercariae. After 6 weeks, praziquantel (300 mg/kg) was used for 2 days to kill the worms. The Art treatment group was treated with intraperitoneal injection of 100 mg/kg/day, while the Fuzheng Huayu Decoction treatment group was fed 16g of fuzheng huayu decoction per 1kg per day. After 6 weeks, fresh liver tissues of the four groups were collected. Masson staining and Western blot were used to observe the succinate dehydrogenase subunit A (SDHA) and malate dehydrogenase (MDH2), citrate synthase (CS), ketoglutarate dehydrogenase (OGDH), and target of rapamycin 1 (mTORC1) pathway involved in mitochondrial tricarboxylic acid cycle in liver tissues. The relative expression levels of adenylate activated protein kinase (AMPK) and mitochondrial autophagy pathway kinase (PINK1) were detected. Liver tissue samples were extracted from each group to detect the mitochondrial oxygen consumption rate. Two-way ANOVA was used to compare the significance and difference between two sets of samples. Results: Masson staining showed that the infection group mice had significantly higher liver fibrosis area than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group mice had lower liver fibrosis area than the infection group. Western blot analysis showed that the infection group (0.82 ± 0.05) had significantly lower relative expression of SDHA protein than the healthy control group (1.00 ± 0.05) (t = 11.23, P = 0.0035), while the Art treatment group (0.73 ± 0.05) had significantly higher relative expression of SDHA protein than the infection group (t = 10.79, P = 0.0073). However, there was no significant change in Fuzheng Huayu Decoction treatment group (0.98±0.05) (t = 1.925, P = 0.1266). The relative expression of p-AMPK protein was significantly higher in the infection group (1.15 ±0.05) than in the healthy control group (0.98 ± 0.07, t = 12.18, P = 0.0029), and the expression of p-AMPK in the Art treatment group (0.50 ± 0.05) was significantly lower than the infection group (t = 11.78, P = 0.0032). The relative protein expression of AMPK was significantly lower in the infection group (0.80 ± 0.05) than in the healthy control group (1.00 ± 0.05, t = 10.53, P = 0.0046). The expression of AMPK was significantly lower in the Art treatment group (0.54 ± 0.05) than in the infection group (T = 13.98, P = 0.0036). The relative expression of p-mTORC1 protein (0.93 ± 0.08) was not significantly different in the infection group than in the healthy control group (t = 2.28, P = 0.065), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1 protein than the infection group (t = 10.58, P = 0.029). The expression of p-mTORC1/ m-TORC1 was not significantly different in the infection group (0.98 ± 0.03) than in the healthy control group (0.97 ± 0.03, t = 0.98, P = 0.085), while the Art treatment group (0.63 ± 0.05) had significantly lower relative expression of p-mTORC1/ m-TORC1 than the infection group (t = 14.58, P = 0. 009). The relative protein expression of PINK1 was significantly lower in the infection group (0.55 ± 0.05) than in the healthy control group (1.00 ± 0.03, t = 13.49, P = 0.0011), while the Art treatment group (1.21 ± 0.05, t = 9.98, P = 0.0046) and Fuzheng Huayu Decoction treatment group (1.31 ±0.35, t = 6.98, P = 0.027) had significantly higher relative protein expression of PINK1 than the infection group. Mitochondrial function tests showed that after adding substrate complex II, the oxygen consumption of the infection group was lower than the healthy control group, while the Art treatment group and the Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. The oxygen consumption was significantly lower after adding the substrate complex III in the infection group than the healthy control group, while the Art treatment group and Fuzheng Huayu Decoction treatment group had higher oxygen consumption than the infection group. Conclusion: Art can alleviate schistosomiasis liver fibrosis by inhibiting AMPK/mTORC1 signaling pathway activity and enhancing mitochondrial oxygen consumption, autophagy and SDHA expression.


Assuntos
Animais , Feminino , Camundongos , Artesunato , Medicamentos de Ervas Chinesas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Camundongos Endogâmicos C57BL , Mitocôndrias , Esquistossomose
20.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884717

RESUMO

Gestational diabetes mellitus results, in part, from a sub-optimal ß-cell mass (BCM) during pregnancy. Artemisinins were reported to increase BCM in models of diabetes by α- to ß-cell conversion leading to enhanced glucose tolerance. We used a mouse model of gestational glucose intolerance to compare the effects of an artemisinin (artesunate) on glycemia of pregnant mice with vehicle treatment (acetone) or no treatment. Animals were treated daily from gestational days (GD) 0.5 to 6.5. An intraperitoneal glucose tolerance test was performed prior to euthanasia at GD18.5 or post-partum. Glucose tolerance was significantly improved in both pregnant and non-pregnant mice with both artesunate and vehicle-alone treatment, suggesting the outcome was primarily due to the acetone vehicle. In non-pregnant, acetone-treated animals, improved glucose tolerance was associated with a higher BCM and a significant increase in bihormonal insulin and glucagon-containing pancreatic islet cells, suggesting α- to ß-cell conversion. BCM did not differ with treatment during pregnancy or post-partum. However, placental weight was higher in acetone-treated animals and was associated with an upregulation of apelinergic genes. Acetone-treated animals had reduced weight gain during treatment despite comparable food consumption to non-treated mice, suggesting transient effects on nutrient uptake. The mean duodenal and ileum villus height was reduced following exposure to acetone. We conclude that acetone treatment may mimic transient fasting, resulting in a subsequent improvement in glucose tolerance during pregnancy.


Assuntos
Acetona/farmacologia , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Diabetes Gestacional/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Animais , Apelina/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Jejum , Feminino , Intestinos/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA