Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 334: 122043, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553239

RESUMO

Here, we prepared ionically crosslinked films using pectin extracted from agro-wastes, specifically ambarella peels (AFP) and jackfruit seed slimy sheath (JFS). Physiochemical properties of pectins, including moisture content, molecular weight (Mw), degree of esterification (DE), and galacturonic acid (GA), were analyzed. Optimal extraction was determined, i.e., citric acid concentration 0.3 M, time 60 min, solid/liquid ratio 1:25, and temperature 90 °C for AFP or 85 °C for JFS. Pectin yields under these conditions were 29.67 % ± 0.35 % and 29.93 ± 0.49 %, respectively. AFP pectin revealed Mw, DE, and GA values of 533.20 kDa, 67.08 % ± 0.68 %, and 75.39 ± 0.82 %, while JFS pectin exhibited values of 859.94 kDa, 63.04 % ± 0.47 %, and 78.63 % ± 0.71 %, respectively. The pectin films crosslinked with Ca2+, Cu2+, Fe3+, or Zn2+ exhibited enhanced tensile strength and Young's modulus, along with reduced elongation at break, moisture content, water solubility, water vapor permeability, and oxygen permeability. Structural analyses indicated metal ions were effectively crosslinked with carboxyl groups of pectin. Notably, the Cu2+-crosslinked film demonstrated superior water resistance, mechanical properties, and exhibited the highest antioxidant and antibacterial activities among all tested films. Therefore, the pectin films represent a promising avenue to produce eco-friendly food packaging materials with excellent properties.


Assuntos
Artocarpus , Pectinas , Artocarpus/química , Embalagem de Alimentos , Frutas/química , Íons/análise , Pectinas/química , Sementes
2.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338941

RESUMO

A polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp (JFP-Ps) is known for its excellent bioactivities. However, its impact on small intestinal barrier function is still largely unexplored. The study aimed to examine the protection effect of JFP-Ps against dextran sodium sulfate-induced enteritis and its underlying mechanism. This research revealed that JFP-Ps mitigated small intestinal tissue damage by reducing the expression of pro-inflammatory cytokines and promoting the expression of the anti-inflammatory cytokine interleukin-10 in the small intestine. JFP-Ps diminished oxidative stress by bolstering the activity of antioxidant enzymes and reducing the concentration of malondialdehyde in the small intestine. In addition, JFP-Ps may restore the mechanical barrier and inhibit intestinal structure damage by augmenting the expression of short-chain fatty acids (SCFAs) receptors (GPR41/43) and up-regulating the expression of tight junction proteins (occludin). In conclusion, JFP-Ps may positively influence intestinal health by relieving oxidative stress in the small intestine, improving mechanical barrier function, activating the SCFA-GPR41/GPR43 axis, and inhibiting TLR4/MAPK pathway activation. The results augment our comprehension of the bioactivities of JFP-Ps, corroborating its great potential as a functional food.


Assuntos
Artocarpus , Enterite , Sulfatos , Ratos , Animais , Artocarpus/química , Dextranos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Citocinas , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Sulfato de Dextrana/toxicidade
3.
Anticancer Drugs ; 34(10): 1085-1093, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823283

RESUMO

Every food source contains both edible and inedible waste components. Millions of tonnes of trash from the food business are made from fruits, and these wastes are containing higher-value medicinal components, such as alkaloids, flavonoids, phenolic contents, a huge amount of proteins and secondary metabolites. These bioactive phytoconstituents are being used for the treatment of many serious fatal diseases. So, utilizing the recovered bioactive molecules from food wastes as functional ingredients offers a long-term alternative source of therapeutically active components that will lead to the discovery of novel phytoconstituents or novel treatment approaches. The goal of this systematic study is to provide an overview of the jackfruit (Artocarpus heterophyllus Lam, Moraceae) edible byproducts, such as jackfruit seeds that are largely neglected. This seed contains numerous bioactive lead molecules, such as carbohydrate-binding protein jacalin, which exhibits potent anticancer activity against colon cancer, blood cancer and breast cancer as well as can enlighten the new possible treatment approaches in targeted therapy and photodynamic chemotherapy. Moreover, jackfruit waste seed can be taken as a dietary food, which is having property to prevent and treat cancer and other lifestyle diseases. The works that have been carried out to utilize jackfruit waste other than the juicy edible bulbs have been reviewed in this article.


Assuntos
Artocarpus , Lectinas , Humanos , Lectinas/análise , Lectinas/química , Artocarpus/química , Lectinas de Plantas/análise , Sementes/química
4.
J Econ Entomol ; 116(4): 1205-1210, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37289434

RESUMO

Artocarpus lacucha, a plant in the Moraceae family, has traditionally been used in Southeast Asian medicine to treat various ailments. This study investigated the insecticidal potential against Spodoptera litura of several compounds extracted from A. lacucha using a topical application method. A sequential extraction method was employed with A. lacucha stems to identify the most toxic crude extract by using hexane, dichloromethane, ethyl acetate, and methanol solvents. Subsequently, the most toxic crude extract was analyzed for chemical composition by HPLC, followed by the isolation process. Among these crude extracts, the ethyl acetate crude extract was the most toxic to second-instar S. litura larvae (24-h LD50 value of ~9.07 µg/larva). Our results showed that the catechin isolated from the ethyl acetate crude extract exhibited the highest toxicity against this insect (24-h LD50 value of ~8.37 µg/larva). Additionally, catechin significantly decreased the activities of acetylcholinesterase, carboxylesterases, and glutathione S-transferase in the larvae. These findings suggest that catechin isolated from A. lacucha could be a potential insecticidal agent against S. litura. However, the toxicity and persistence of catechin under field conditions need to be further investigated to develop this novel insecticide.


Assuntos
Artocarpus , Catequina , Inseticidas , Mariposas , Animais , Spodoptera , Inseticidas/farmacologia , Larva , Artocarpus/química , Acetilcolinesterase , Extratos Vegetais/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1553-1557, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005843

RESUMO

Two prenylated 2-arylbenzofurans were isolated from roots of Artocarpus heterophyllus, with a combination of various chromatographic approaches, including ODS, MCI, Sephadex LH-20, and semipreparative high performance liquid chromatography(HPLC). They were identified as 5-[6-hydroxy-4-methoxy-5,7-bis(3-methylbut-2-enyl)benzofuran-2-yl]-1,3-benzenediol(1) and 5-[2H,9H-2,2,9,9-tetramethyl-furo[2,3-f]pyrano[2,3-h][1]benzopyran-6-yl]-1,3-benzenediol(2) with spectroscopic methods, such as HR-ESI-MS, IR, 1D NMR, and 2D NMR, and named artoheterins B(1) and C(2), respectively. The anti-respiratory burst activities of the two compounds were evaluated with rat polymorphonuclear neutrophils(PMNs) stimulated by phorbol 12-myristate 13-acetate(PMA). The results showed that 1 and 2 exhibited significant inhibitory effect on respiratory burst of PMNs with IC_(50) values of 0.27 and 1.53 µmol·L~(-1), respectively.


Assuntos
Artocarpus , Ratos , Animais , Estrutura Molecular , Artocarpus/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química
6.
Food Chem ; 418: 135807, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36989643

RESUMO

While fruit biowastes pose an environmental hazard, they can be utilized as a source of beneficial biopolymers such as pectin. However, conventional extraction techniques require long processing time with low, impure yields, and microwave assisted extraction (MAE) can suffer from these drawbacks. Here, MAE was applied to extract pectin from jackfruit rags and compared with conventional heating reflux extraction (HRE). Response surface methodology was adopted to optimize pectin yield, based on pH (1.0-2.0), solid-liquid ratio (1:20-1:30), time (5-90 min), and temperature (60-95 °C). Pectin extraction by MAE required lower temperatures (65.99 °C) and shorter reaction times (10.56 min). Pectin HRE resulted in a product with amorphous structures and rough surfaces, while pectin-MAE was high crystalline with smooth surfaces. Although both pectin samples showed shear-thinning behavior, pectin-MAE exhibited higher antioxidant and antibacterial activities. Therefore, microwave assisted extraction was an efficient method to extract pectin from jackfruit rags.


Assuntos
Artocarpus , Pectinas , Artocarpus/química , Frutas/química , Micro-Ondas , Pectinas/química , Temperatura , Antibacterianos/química , Antibacterianos/farmacologia , Fenômenos Químicos
7.
J Sci Food Agric ; 103(6): 3194-3204, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534030

RESUMO

BACKGROUND: The physicochemical and functional properties of pectin (JFP) extracted from edible portions (including pericarp and seed) of raw jackfruit (an underutilized tropical fruit) at four different maturity stages (referred to as stages I, II, III, and IV) were characterized in terms of extraction yields, chemical composition, molecular weight, and antioxidant properties to evaluate its potential use in foods. RESULT: The JFP yield increased from 9.7% to 21.5% with fruit maturity, accompanied by an increase in the galacturonic acid content (50.1%, 57.1%, 63.6%, and 65.2%) for stages I-IV respectively. The molecular weight increased from 147 kDa in stage I to 169 kDa in stage III, but decreased to 114 kDa in stage IV, probably due to cell-wall degradation during maturation. The JFP was of the high methoxyl type and the degree of esterification increased from 65% to 87% with fruit maturity. The functional properties of JFP were similar to or better than those reported for commercial apple pectin, thus highlighting its potential as a food additive. Although the phenolics and flavonoids content of JFP decreased with fruit maturity, their antioxidant capacity increased, which may be correlated with the increased content of galacturonic acid upon fruit development. Gels prepared from JFP showed viscoelastic behavior. Depending on the maturity stage in which they were obtained, different gelation behavior was seen. CONCLUSION: The study confirmed the potential of pectin extracted from edible parts of jackfruit as a promising source of high-quality gelling pectin with antioxidant properties, for food applications. © 2022 Society of Chemical Industry.


Assuntos
Artocarpus , Pectinas , Pectinas/química , Artocarpus/química , Antioxidantes/análise , Frutas/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-36565667

RESUMO

Nearly half of the world's population is at risk of being infected by Plasmodium falciparum, the pathogen of malaria. Increasing resistance to common antimalarial drugs has encouraged investigations to find compounds with different scaffolds. Extracts of Artocarpus altilis leaves have previously been reported to exhibit in vitro antimalarial activity against P. falciparum and in vivo activity against P. berghei. Despite these initial promising results, the active compound from A. altilis is yet to be identified. Here, we have identified 2-geranyl-2', 4', 3, 4-tetrahydroxy-dihydrochalcone (1) from A. altilis leaves as the active constituent of its antimalarial activity. Since natural chalcones have been reported to inhibit food vacuole and mitochondrial electron transport chain (ETC), the morphological changes in food vacuole and biochemical inhibition of ETC enzymes of (1) were investigated. In the presence of (1), intraerythrocytic asexual development was impaired, and according to the TEM analysis, this clearly affected the ultrastructure of food vacuoles. Amongst the ETC enzymes, (1) inhibited the mitochondrial malate: quinone oxidoreductase (PfMQO), and no inhibition could be observed on dihydroorotate dehydrogenase (DHODH) as well as bc1 complex activities. Our study suggests that (1) has a dual mechanism of action affecting the food vacuole and inhibition of PfMQO-related pathways in mitochondria.


Assuntos
Antimaláricos , Artocarpus , Chalconas , Malária Falciparum , Humanos , Plasmodium falciparum , Chalconas/farmacologia , Chalconas/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artocarpus/química , Artocarpus/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Malatos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Malária Falciparum/tratamento farmacológico , Mitocôndrias/metabolismo , Quinonas/farmacologia
9.
Plant Foods Hum Nutr ; 78(1): 76-85, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36327062

RESUMO

Jackfruit is one of the major tropical fruits, but information on the phytochemicals and biological benefits of its pulp is limited. In this study, the phytochemicals and biological activities including antioxidant, antitumor and anti-inflammatory activities of five jackfruit pulp cultivars (M1, M2, M3, M7 and T5) were comparatively investigated. A total of 11 compounds were identified in all cultivars of jackfruit pulp, among which 4-hydroxybenzoic acid, caffeic acid, ferulic acid and tryptophan N-glucoside were reported for the first time in jackfruit. T5 exhibited the highest total phenolic content (7.69 ± 0.73 mg GAE/g DW), antioxidant capacity (109.8, 96.7 and 207 mg VCE/g DW for DPPH, ABTS and FRAP, respectively), antitumor activity (80.31%) and anti-inflammatory activity (78.44%) among five cultivars. These results can provide a reference for growers to choose jackfruit cultivar and offer an insight into the industrial application of jackfruit pulp derived-products.


Assuntos
Artocarpus , Artocarpus/química , Antioxidantes/química , Extratos Vegetais/química , Compostos Fitoquímicos/química , Fenóis
10.
Artigo em Chinês | WPRIM | ID: wpr-970627

RESUMO

Two prenylated 2-arylbenzofurans were isolated from roots of Artocarpus heterophyllus, with a combination of various chromatographic approaches, including ODS, MCI, Sephadex LH-20, and semipreparative high performance liquid chromatography(HPLC). They were identified as 5-[6-hydroxy-4-methoxy-5,7-bis(3-methylbut-2-enyl)benzofuran-2-yl]-1,3-benzenediol(1) and 5-[2H,9H-2,2,9,9-tetramethyl-furo[2,3-f]pyrano[2,3-h][1]benzopyran-6-yl]-1,3-benzenediol(2) with spectroscopic methods, such as HR-ESI-MS, IR, 1D NMR, and 2D NMR, and named artoheterins B(1) and C(2), respectively. The anti-respiratory burst activities of the two compounds were evaluated with rat polymorphonuclear neutrophils(PMNs) stimulated by phorbol 12-myristate 13-acetate(PMA). The results showed that 1 and 2 exhibited significant inhibitory effect on respiratory burst of PMNs with IC_(50) values of 0.27 and 1.53 μmol·L~(-1), respectively.


Assuntos
Ratos , Animais , Estrutura Molecular , Artocarpus/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética , Raízes de Plantas/química
11.
Molecules ; 27(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296532

RESUMO

Studies have shown that approximately two-thirds of the plant species in the world have some medicinal value. Artocarpus lakoocha is a synonym for Artocarpus lacucha and is a plant that can be found in Indonesia. This medicinal plant has been used to treat many diseases. (1) Objective: This article discusses the scientific investigations carried out on A. lacucha, namely the plant's chemical content, pharmacological activity, and active compounds. (2) Methods: The design of this study was based on an article that was a review of previous research. A search for relevant publications over the past ten years (2012-2022) using data from Pubmed, Proquest, Ebsco, ScienceDirect, and Google Scholar resulted in the discovery of 369 articles. (3) Results: Fifty relevant articles investigate A. lacucha's substances and their applications in the health field. The presence of secondary metabolites and bioactive compounds has been reported, which is evidence that A. lacucha possesses antidiarrheal, immunostimulant, anticholesterol, and hepatoprotective agents. (4) Conclusions: Mobe (A. lacucha) is a plant native to North Sumatra, Indonesia. This plant is efficacious as an antioxidant, antibacterial, antidiarrheal, anti-inflammatory, analgesic, antinociceptive, schistosomicidal, hepatoprotective, neuroprotective, cytotoxic, antiglycation, and anticholesterol, and can also be used for anti-aging and wound healing. In addition to its various benefits, it turns out that this plant also has many active compounds that are useful to the health sector, especially the pharmaceutical field.


Assuntos
Artocarpus , Artocarpus/química , Antioxidantes/farmacologia , Antidiarreicos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Analgésicos , Antibacterianos , Adjuvantes Imunológicos , Etnofarmacologia , Fitoterapia
12.
Bioorg Chem ; 127: 105978, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752099

RESUMO

Artocarpus elasticus is a popular fruit tree in the tropical regions. Primary screenings of methanol extracts of the root bark confirmed its potent inhibition of bacterial neuraminidase (BNA), which plays an essential role in the pathogenesis of many microbial diseases. Assessments of the responsible phytochemicals were conducted by isolating eight compounds (1-8) and two of them (6 and 8) were identified as new compounds. Among the isolates, the dihydrobenzoxanthones attained the highest BNA inhibition with IC50 values of 0.5 âˆ¼ 3.9 µM. Further investigation of the inhibitory mechanism by Lineweaver-Burk plots revealed the phytochemicals to function as reversible noncompetitive inhibitors. Fluorescence quenching showed their binding affinities were highly correlated with their inhibitory potential dose-dependently. Molecular docking experiments suggested the dihydrobenzoxanthones (4 and 6) as noncompetitive inhibitors of BNA with unique interaction with Tyr435 of BNA in comparison with the mother flavonoid (7).


Assuntos
Artocarpus , Artocarpus/química , Bactérias , Flavonoides/química , Simulação de Acoplamento Molecular , Neuraminidase , Compostos Fitoquímicos , Extratos Vegetais/química
13.
J Microbiol Methods ; 195: 106457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35367278

RESUMO

Conventional microbiological methods to evaluate the in vitro antifungal activity of bioactive compounds usually consume a long time. It is also difficult to calculate different kinetic parameters. For this reason, this study aimed to evaluate the sensitivity of phytopathogenic fungi to an ethanolic extract of jackfruit leaf by the poison agar and isothermal microcalorimetry (IMC) tests. The kinetic parameters (maximum growth rate (µMax), total heat (ϕMax), time to peak (T1), and lag (λ) phase) varied by fungal isolate. However, the results indicated a reduction of the total heat produced from the fungi at 5 mg/mL of the extract referred to as the control without extract (p < 0.05). Pearson coefficients were established to determine the relationship between both techniques. Correlations demonstrated that the λ phase and µMax are highly related (> 0.51) to the in vitro percentage inhibition. Therefore, this study contributes to the use of the IMC as an alternative to complement the classical methods of fungal inhibition, providing data in real-time.


Assuntos
Artocarpus , Artocarpus/química , Etanol/análise , Frutas/química , Fungos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química
14.
Chem Biodivers ; 18(12): e2100499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761862

RESUMO

A new natural Diels-Alder adduct (3) was isolated from the leaves and stem bark of Artocarpus integer, along with seventeen known compounds (1, 2, and 4-18). Structural elucidation was conducted using NMR and HR-ESI-MS data, and comparisons were made with previous studies. Deoxyartonin I (3) exhibited the most potent α-glucosidase inhibition (IC50 7.80±0.1 µM), outperforming the acarbose positive control. This was mixed-mode inhibition, as indicated by the intersect in the second quadrant of each respective plot. An in silico molecular docking model and the pharmacokinetic features of 3 suggest that it is a potential inhibitor of enzyme α-glucosidase, and is therefore a lead candidate as a drug against diabetes mellitus.


Assuntos
Artocarpus/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
15.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443442

RESUMO

The general aim of this study was to evaluate physicochemical properties, prebiotic activity and anticancer potential of jackfruit (Artocarpus heterophyllus) seed flour. The drying processes of jackfruit seeds were performed at 50, 60 and 70 °C in order to choose the optimal temperature for obtaining the flour based on drying time, polyphenol content and antioxidant capacity. The experimental values of the moisture ratio during jackfruit seed drying at different temperatures were obtained using Page's equation to establish the drying time for the required moisture between 5 and 7% in the flour. The temperature of 60 °C was considered adequate for obtaining good flour and for performing its characterization. The chemical composition, total dietary fiber, functional properties and antioxidant capacity were then examined in the flour. The seed flour contains carbohydrates (73.87 g/100 g), dietary fiber (31 g/100 g), protein (14 g/100 g) and lipids (1 g/100 g). The lipid profile showed that the flour contained monounsaturated (4 g/100 g) and polyunsaturated (46 g/100 g) fatty acids. Sucrose, glucose, and fructose were found to be the predominant soluble sugars, and non-digestible oligosaccharides like 1-kestose were also found. The total polyphenol content was 2.42 mg of gallic acid/g of the sample; furthermore, the antioxidant capacity obtained by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 901.45 µmol Trolox/100 g and 1607.87 µmol Trolox/100 g, respectively. The obtained flour exhibited good functional properties, such as water and oil absorption capacity, swelling power and emulsifier capacity. Additionally, this flour had a protective and preventive effect which is associated with the potential prebiotic activity in Lactobacillus casei and Bifidobacterium longum. These results demonstrate that jackfruit seed flour has good nutritional value and antioxidant and prebiotic activity, as well as potential protective effects and functional properties, making it an attractive food or ingredient in developing innovative functional products.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Artocarpus/química , Fenômenos Químicos , Farinha/análise , Prebióticos , Sementes/química , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dessecação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Umidade , Cinética , Lipídeos/análise , Extratos Vegetais/farmacologia , Polifenóis/análise , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/metabolismo , Viscosidade , Água/química
16.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299623

RESUMO

Oxyresveratrol, a polyphenol extracted from the plant Artocarpus lakoocha Roxb, has been reported to be an antioxidant and an oxygen-free radical scavenger. We investigated whether oxyresveratrol affects the generation of superoxide anion (O2-) by human monocytes, which are powerful reactive oxygen species (ROS) producers. We found that oxyresveratrol inhibited the O2- production induced upon stimulation of monocytes with ß-glucan, a well known fungal immune cell activator. We then investigated whether the inclusion of oxyresveratrol into nanoparticles could modulate its effects on O2- release. We synthesized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on monocytes. We found that empty PLGA nanoparticles induced O2- production by resting monocytes and enhanced the formation of this radical in ß-glucan-stimulated monocytes. Interestingly, the insertion of oxyresveratrol into PLGA nanoparticles significantly inhibited the O2- production elicited by unloaded nanoparticles in resting monocytes as well as the synergistic effect of nanoparticles and ß-glucan. Our results indicate that oxyresveratrol is able to inhibit ROS production by activated monocytes, and its inclusion into PLGA nanoparticles mitigates the oxidative effects due to the interaction between these nanoparticles and resting monocytes. Moreover, oxyresveratrol can contrast the synergistic effects of nanoparticles with fungal agents that could be present in the patient tissues. Therefore, oxyresveratrol is a natural compound able to make PLGA nanoparticles more biocompatible.


Assuntos
Materiais Biocompatíveis/química , Radicais Livres/metabolismo , Monócitos/efeitos dos fármacos , Nanopartículas/química , Oxigênio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estilbenos/química , Estilbenos/farmacologia , Antioxidantes/farmacologia , Artocarpus/química , Células Cultivadas , Humanos , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Sci Rep ; 11(1): 6854, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767225

RESUMO

Colorectal cancer (CRC) represents the third leading cause of death among cancer patients below the age of 50, necessitating improved treatment and prevention initiatives. A crude methanol extract from the wood pulp of Artocarpus heterophyllus was found to be the most bioactive among multiple others, and an enriched extract containing 84% (w/v) artocarpin (determined by HPLC-MS-DAD) was prepared. The enriched extract irreversibly inhibited the activity of human cytochrome P450 CYP2C9, an enzyme previously shown to be overexpressed in CRC models. In vitro evaluations on heterologously expressed microsomes, revealed irreversible inhibitory kinetics with an IC50 value of 0.46 µg/mL. Time- and concentration-dependent cytotoxicity was observed on human cancerous HCT116 cells with an IC50 value of 4.23 mg/L in 72 h. We then employed the azoxymethane (AOM)/dextran sodium sulfate (DSS) colitis-induced model in C57BL/6 mice, which revealed that the enriched extract suppressed tumor multiplicity, reduced the protein expression of proliferating cell nuclear antigen, and attenuated the gene expression of proinflammatory cytokines (Il-6 and Ifn-γ) and protumorigenic markers (Pcna, Axin2, Vegf, and Myc). The extract significantly (p = 0.03) attenuated (threefold) the gene expression of murine Cyp2c37, an enzyme homologous to the human CYP2C9 enzyme. These promising chemopreventive, cytotoxic, anticancer and anti-inflammatory responses, combined with an absence of toxicity, validate further evaluation of A. heterophyllus extract as a therapeutic agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Artocarpus/química , Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Madeira/química , Animais , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/patologia , Neoplasias Colorretais/patologia , Citocromo P-450 CYP2C9/química , Citocromo P-450 CYP2C9/metabolismo , Células HCT116 , Humanos , Masculino , Lectinas de Ligação a Manose/química , Camundongos , Camundongos Endogâmicos C57BL , Lectinas de Plantas/química
18.
Planta Med ; 87(9): 709-715, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33511623

RESUMO

Reduction of intestinal glucose absorption might result from either delayed carbohydrate digestion or blockage of glucose transporters. Previously, oxyresveratrol was shown to inhibit α-glucosidase, but its effect on glucose transporters has not been explored. The present study aimed to assess oxyresveratrol-induced inhibition of the facilitative glucose transporter 2 and the active sodium-dependent glucose transporter 1. An aqueous extract of Artocarpus lacucha, Puag Haad, which is oxyresveratrol-enriched, was also investigated. Glucose transport was measured by uptake into Caco-2 cells through either glucose transporter 2 or sodium-dependent glucose transporter 1 according to the culture conditions. Oxyresveratrol (40 to 800 µM) dose-dependently reduced glucose transport, which appeared to inhibit both glucose transporter 2 and sodium-dependent glucose transporter 1. Puag Haad at similar concentrations also inhibited these transporters but with greater efficacy. Oxyresveratrol and Puag Haad could help reduce postprandial hyperglycemic peaks, which are considered to be most damaging in diabetics.


Assuntos
Artocarpus , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Artocarpus/química , Células CACO-2 , Glucose , Humanos
19.
Molecules ; 27(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011235

RESUMO

Phytochemical investigation of Artocarpus chama stem was performed by chromatographic techniques, resulting from the isolation and structure elucidation of three new compounds, namely 3'-farnesyl-apigenin (1), 3-(hydroxyprenyl) isoetin (2), and 3-prenyl-5,7,2',5'-tetrahydroxy-4'-methoxyflavone (3), and five known compounds, namely homoeriodictyol (4), isocycloartobilo-xanthone (5), artocarpanone (6), naringenin (7), and artocarpin (8). From the screening result, A. chama extract showed a potent tyrosinase inhibitory effect. Ihe isolated compounds 1, 4 and 6 also exhibited tyrosinase inhibition with IC50 of 135.70, 52.18, and 38.78 µg/mL, respectively. Moreover, compounds 3, 4, 5, 6, and 8 showed strong activity against Staphylococcus epidermidis, S. aureus, methicillin-resistant S. aureus, and Cutibacterium acnes. This study is the first report on phytochemical investigation with new compounds and biological activities of A. chama. Skin infection can cause dark spots or hyperpigmentation. The isolated compounds that showed both anityrosinase and antimicrobial activities will be further studied in in vivo and clinical trials in order to develop treatment for hyperpigmentation, which is caused by infectious diseases by microorganisms.


Assuntos
Antibacterianos/química , Artocarpus/química , Flavonas/química , Extratos Vegetais/química , Caules de Planta/química , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flavanonas/química , Flavonas/farmacologia , Humanos , Lectinas de Ligação a Manose/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Lectinas de Plantas/química , Prenilação , Staphylococcus epidermidis/efeitos dos fármacos , Xantonas/química
20.
Anticancer Agents Med Chem ; 21(4): 523-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32753023

RESUMO

BACKGROUND: Compounds with biological activities had been reported in the jackfruit. These compounds are susceptible to structural changes such as isomerization and/or loss of bonds due to environmental factors. Then, the encapsulation for protecting is a necessary process. OBJECTIVE: In this study, encapsulation of High-Value Biological Compounds (HVBC) was performed using High Degree of Polymerization Agave Fructans (HDPAF) and Whey Protein (WP) as encapsulating materials to preserve the biological properties of the HVBC. METHODS: The extract was characterized by HPLC-MS in order to show the presence of compounds with preventive or therapeutic effects on chronic degenerative diseases such as cancer. The micrographs by Scanning Electron Microscopy (SEM), Thermal Analysis (TGA and DSC), photostabilization and antiproliferation of M12.C3.F6 cell line of capsules were evaluated. RESULTS: The micrographs of the nanocapsules obtained by Scanning Electron Microscopy (SEM) showed spherical capsules with sizes between 700 and 800nm. No cracks, dents or deformations were observed. The Thermogravimetric Analysis (TGA) evidenced the decomposition of the unencapsulated extract ranging from 154 to 221°C. On the other hand, the fructan-whey protein mixture demonstrated that nanocapsules have a thermoprotective effect because the decomposition temperature of the encapsulated extract increased 32.1°C. Differential Scanning Calorimetry (DSC) exhibited similar values of the glass transition temperature (Tg) between the capsules with and without extract; which indicates that the polymeric material does not interact with the extract compounds. The photoprotection study revealed that nanocapsules materials protect the jackfruit extract compounds from the UV radiation. Finally, the cell viability on the proliferation of M12.C3.F6 cell line was not affected by powder nanocapsules without jackfruit extract, indicating that capsules are not toxic for these cells. However, microcapsules with jackfruit extract (50µg/ml) were able to inhibit significantly the proliferation cells. CONCLUSION: The encapsulation process provides thermoprotection and photostability, and the antiproliferative activity of HVBC from jackfruit extract was preserved.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artocarpus/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Cápsulas/química , Cápsulas/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA