Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 12(4): 341-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20381632

RESUMO

In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an acetylated variant, N-acetyl-diaminopentane, which reached levels of more than 25% of that of the desired product.


Assuntos
Cadaverina/biossíntese , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Redes e Vias Metabólicas/genética , Aminoácido Oxirredutases/metabolismo , Aspartato Quinase/genética , Aspartato Quinase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Di-Hidrodipicolinato Redutase/metabolismo , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Homosserina Desidrogenase/genética , Homosserina Desidrogenase/metabolismo , Lisina/metabolismo , Ácido Oxaloacético/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Mutação Puntual , Piridoxal/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Biologia de Sistemas , Treonina/metabolismo
2.
FEBS J ; 274(1): 164-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17140415

RESUMO

Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Aspartato Quinase/metabolismo , Regulação Alostérica , Proteínas de Arabidopsis/genética , Aspartato Quinase/genética , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Lisina/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/farmacologia
3.
J Bacteriol ; 178(22): 6496-507, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8932306

RESUMO

Diaminopimelate (DAP) is a unique metabolite used for both the biosynthesis of lysine in bacteria and the construction of the peptidoglycan of many species of bacteria, including mycobacteria. DAP is synthesized by bacteria as part of the aspartate amino acid family, which includes methionine, threonine, isoleucine, and lysine. Aspartokinase, the first enzyme in this pathway, is encoded by the ask gene in mycobacteria. Previous attempts to disrupt this gene in Mycobacterium smegmatis were unsuccessful, even when the cells were supplied with all the members of the aspartate family, suggesting that unlike other bacteria, mycobacteria may have an absolute requirement for this pathway even when growing in rich medium containing DAP. The purpose of this study was to determine if the ask gene and the aspartate pathway are essential to M. smegmatis. This study describes a test for gene essentiality in mycobacteria, utilizing a counterselectable marker (streptomycin resistance) in conjunction with a specially constructed merodiploid strain. We have used this system to show that the ask gene could not be disrupted in wild-type M. smegmatis, using selective rich medium supplemented with DAP unless there was an extra copy of ask provided elsewhere in the chromosome. Disruption of ask was also possible in a lysine auxotroph incapable of converting DAP to lysine. The ask mutant, mc21278 (ask1::aph), exhibits multiple auxotrophy (Met-, Thr-, DAP-, and Lys-) and is complemented by the ask gene. This is the first description of DAP auxotrophy in mycobacteria. The ask mutant lyses when deprived of DAP in culture, a characteristic which can be exploited for the reproducible preparation of protoplasts and mycobacterial extracts. The evidence presented here indicates that the aspartate pathway is essential to M. smegmatis and that DAP is the essential product of this pathway.


Assuntos
Aspartato Quinase/metabolismo , Ácido Aspártico/metabolismo , Ácido Diaminopimélico/metabolismo , Mycobacterium/metabolismo , Aspartato Quinase/genética , Cruzamentos Genéticos , Genes Bacterianos , Genes Letais , Teste de Complementação Genética , Lisina/biossíntese , Família Multigênica , Mutação , Mycobacterium/genética , Peptidoglicano/biossíntese , Recombinação Genética
4.
Plant Mol Biol ; 19(5): 815-23, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1643284

RESUMO

The essential amino acid lysine is synthesized in higher plants by a complex pathway that is predominantly regulated by feedback inhibition of two enzymes, namely aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). Although DHPS is thought to play a major role in this regulation, the relative importance of AK is not known. In order to study this regulation, we have expressed in the chloroplasts of transgenic potato plants a DHPS derived from Escherichia coli at a level 50-fold above the endogenous DHPS. The bacterial enzyme is much less sensitive to lysine inhibition than its potato counterpart. DHPS activity in leaves, roots and tubers of the transgenic plants was considerably higher and more resistant to lysine inhibition than in control untransformed plants. Furthermore, this activity was accompanied by a significant increase in level of free lysine in all three tissues. Yet, the extent of lysine overproduction in potato leaves was significantly lower than that previously reported in leaves of transgenic plants expressing the same bacterial enzyme, suggesting that in potato, AK may also play a major regulatory role in lysine biosynthesis. Indeed, the elevated level of free lysine in the transgenic potato plants was shown to inhibit the lysine-sensitive AK activity in vivo. Our results support previous reports showing that DHPS is the major rate-limiting enzyme for lysine synthesis in higher plants, but they suggest that additional plant-specific regulatory factors are also involved.


Assuntos
Hidroliases/genética , Lisina/biossíntese , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Aspartato Quinase/genética , Aspartato Quinase/metabolismo , Western Blotting , Cloroplastos , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroliases/metabolismo , Lisina/genética , Proteínas Recombinantes de Fusão/genética , Rhizobium/genética , Transformação Genética/genética
5.
Biochemistry ; 31(3): 799-805, 1992 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-1731937

RESUMO

The substrate specificity of aspartokinase I has been examined by using both steady-state kinetic analyses and phosphorus-31 NMR spectroscopic studies. Analogues in which the alpha-amino group is either derivatized or replaced are not substrates or inhibitors for the enzyme, indicating the importance of the alpha-amino group as a binding determinant. The alpha-carboxyl group is not required for substrate recognition, and the alpha-amide or alpha-esters are competent alternative substrates. In addition, beta-derivatized structural analogues, such as the beta-hydroxamate, the beta-amide, or beta-esters, were found to be viable substrates. This was unexpected since the beta-carboxyl group is the usual site of phosphorylation. The nature of the acyl phosphate products obtained from these beta-derivatized alternative substrates has been characterized by coupled enzyme assays, oxygen-18-labeling studies, and phosphorus-31 NMR spectroscopy. These beta-derivatized analogues are capable of productive binding to aspartokinase through a reversal of regiospecificity to make the alpha-carboxyl group available as a phosphoryl acceptor. Many, but not all, of these alpha-acyl phosphates have also been shown to be viable substrates for the next two enzyme-catalyzed steps in this metabolic pathway. This raises the possibility of producing enzyme-generated alternative substrates that can serve as antimetabolites for the downstream reactions in this biosynthetic pathway.


Assuntos
Aspartato Quinase/metabolismo , Escherichia coli/enzimologia , Aspartato Quinase/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Sítios de Ligação , Cinética , Espectroscopia de Ressonância Magnética , Fósforo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA