Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 12(5): e0244621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579578

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.


Assuntos
Antifúngicos/administração & dosagem , Aspergillus fumigatus/patogenicidade , Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/genética , Aspergilose Pulmonar Invasiva/prevenção & controle , Animais , Antifúngicos/farmacocinética , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicosídeo Hidrolases/farmacocinética , Aspergilose Pulmonar Invasiva/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutropenia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Virulência
2.
mBio ; 12(4): e0097621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399627

RESUMO

Aspergillus fumigatus is an important fungal pathogen that causes allergic reactions but also life-threatening infections. One of the most abundant A. fumigatus proteins is Asp f3. This peroxiredoxin is a major fungal allergen and known for its role as a virulence factor, vaccine candidate, and scavenger of reactive oxygen species. Based on the hypothesis that Asp f3 protects A. fumigatus against killing by immune cells, we investigated the susceptibility of a conditional aspf3 mutant by employing a novel assay. Surprisingly, Asp f3-depleted hyphae were killed as efficiently as the wild type by human granulocytes. However, we identified an unexpected growth defect of mutants that lack Asp f3 under low-iron conditions, which explains the avirulence of the Δaspf3 deletion mutant in a murine infection model. A. fumigatus encodes two Asp f3 homologues which we named Af3l (Asp f3-like) 1 and Af3l2. Inactivation of Af3l1, but not of Af3l2, exacerbated the growth defect of the conditional aspf3 mutant under iron limitation, which ultimately led to death of the double mutant. Inactivation of the iron acquisition repressor SreA partially compensated for loss of Asp f3 and Af3l1. However, Asp f3 was not required for maintaining iron homeostasis or siderophore biosynthesis. Instead, we show that it compensates for a loss of iron-dependent antioxidant enzymes. Iron supplementation restored the virulence of the Δaspf3 deletion mutant in a murine infection model. Our results unveil the crucial importance of Asp f3 to overcome nutritional immunity and reveal a new biological role of peroxiredoxins in adaptation to iron limitation. IMPORTANCE Asp f3 is one of the most abundant proteins in the pathogenic mold Aspergillus fumigatus. It has an enigmatic multifaceted role as a fungal allergen, virulence factor, reactive oxygen species (ROS) scavenger, and vaccine candidate. Our study provides new insights into the cellular role of this conserved peroxiredoxin. We show that the avirulence of a Δaspf3 mutant in a murine infection model is linked to a low-iron growth defect of this mutant, which we describe for the first time. Our analyses indicated that Asp f3 is not required for maintaining iron homeostasis. Instead, we found that Asp f3 compensates for a loss of iron-dependent antioxidant enzymes. Furthermore, we identified an Asp f3-like protein which is partially functionally redundant with Asp f3. We highlight an unexpected key role of Asp f3 and its partially redundant homologue Af3l1 in overcoming the host's nutritional immunity. In addition, we uncovered a new biological role of peroxiredoxins.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Homeostase , Humanos , Ferro/farmacologia , Estresse Oxidativo , Virulência , Fatores de Virulência/metabolismo
3.
Gene ; 762: 145042, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777529

RESUMO

OBJECTIVES: Inhibitory effect of allicin with broad-spectrum antimicrobial activity on A. fumigatus and the regulation mechanism of inflammation and autophagy in vitro and in vivo. METHODS: The corresponding concentration of allicin was prepared according to the needs of the experiment. In vitro, 2 ml 5 × 104 of fungal spores suspension was added to the 6-well plate per hole, and different final concentrations of allicin (1 µl/ml, 2.5 µl/ml, 5 µl/ml, 10 µl/ml, 20 µl/ml, 30 µl/ml) were added. The fungal spores were stained by fluorescent dye SYTO 9 (green) every day, and the spore germination inhibition was detected by flow cytometry in different PH. RAW264.7 cells were cultured and stimulated by A. fumigatus spores for 3 h, then allicin solution was added. Then some cells were stained with ROS probe (green) and hochest33342 (blue). The effect of allicin on ROS was observed by fluorescence microscope. The other part of cells extracted protein from cell lysate and detected the effect of allicin on inflammatory factors and autophagy by Western-blotting. The green and red spots of RAW264.7 cells stably transfected with GFP-RFP-LC3 were observed by fluorescence microscopy. In vivo, A. fumigatus spore was injected intratracheally into mice, then allicin was injected intravenously at a concentration of 5 mg/kg/day for 7 consecutive days. The survival status, pulmonary fungal load and weight of mice was recorded continuously for 30 days and detected the changes of lung by pathological examination and immunohistochemistry. RESULTS: In vitro, allicin significantly inhibited the spore germination of A. fumigatus within 24 h in a dose-dependent manner and it had a stable inhibition on the spore germination of A. fumigatus in acidic environment. Cell experiments showed that allicin inhibited intracellular spore germination by inhibiting ROS production, inflammation and autophagy. In the animal experiment, the survival rate and body weight of allicin injection group were higher than that of non injection group, while the spore load of lung was lower than that of non injection group (P < 0.05). CONCLUSIONS: These results support that allicin reduces inflammation and autophagy resistance to A. fumigatus infection, It also provides a possible treatment for Aspergillus infectious diseases, i.e. early anti-inflammation, antibiotics or drugs that inhibit excessive autophagy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aspergilose/tratamento farmacológico , Autofagia , Sequestradores de Radicais Livres/uso terapêutico , Ácidos Sulfínicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/fisiologia , Dissulfetos , Feminino , Sequestradores de Radicais Livres/farmacologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia
4.
J Mycol Med ; 30(1): 100915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008963

RESUMO

Aspergillus infections are increasingly recognized as a global health problem because of limited antifungal drugs and occurrence of azole resistance worldwide. More cyp51-mediated and non-cyp51-mediated mechanisms of azole resistance have been identified in clinical and laboratory studies in recent years with applications of molecular biotechnology including next-generation sequencing, reverse genetics and so on. In this review, current research on the molecular mechanisms of azole resistance in A. fumigatus were presented and summarized and meanwhile the putative clinical relevance of these findings from bench work were discussed. Important aims are to gain more insight to mechanism of azole resistance and provide some efficient lead for prevention strategy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/genética , Azóis/uso terapêutico , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Aspergilose/genética , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mutação , Esterol 14-Desmetilase/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31685475

RESUMO

Galactomannan (GM) detection in biological samples has been shown to predict therapeutic response by azoles and polyenes. In a murine invasive pulmonary aspergillosis model, fosmanogepix or posaconazole treatment resulted in an ∼6- to 7-log reduction in conidial equivalents (CE)/g lung tissue after 96 h versus placebo. Changes in GM levels in BAL fluid and serum mirrored reductions in lung CE, with significant decreases seen after 96 h or 72 h for fosmanogepix or posaconazole, respectively (P < 0.02).


Assuntos
Antifúngicos/uso terapêutico , Biomarcadores/metabolismo , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/metabolismo , Mananas/metabolismo , Animais , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Galactose/análogos & derivados , Hospedeiro Imunocomprometido , Pulmão/microbiologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Triazóis/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-31405851

RESUMO

We evaluated extended-interval dosing of the investigational echinocandin rezafungin (1, 4, and 16 mg/kg on days 1, 4, and 7 postinoculation) for the treatment of disseminated invasive aspergillosis caused by azole-resistant Aspergillus fumigatus Survival was significantly improved in mice treated with each dose of rezafungin and supratherapeutic posaconazole (20 mg/kg twice daily). Kidney fungal burden, as measured by quantitative real-time PCR, was also significantly reduced in mice treated with rezafungin although variability was observed.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Azóis/uso terapêutico , Equinocandinas/uso terapêutico , Animais , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Azóis/efeitos adversos , Farmacorresistência Fúngica/genética , Equinocandinas/efeitos adversos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rim/virologia , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Triazóis/uso terapêutico
7.
Clin Infect Dis ; 68(9): 1463-1471, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30307492

RESUMO

BACKGROUND: Triazole resistance is an increasing problem in invasive aspergillosis (IA). Small case series show mortality rates of 50%-100% in patients infected with a triazole-resistant Aspergillus fumigatus, but a direct comparison with triazole-susceptible IA is lacking. METHODS: A 5-year retrospective cohort study (2011-2015) was conducted to compare mortality in patients with voriconazole-susceptible and voriconazole-resistant IA. Aspergillus fumigatus culture-positive patients were investigated to identify patients with proven, probable, and putative IA. Clinical characteristics, day 42 and day 90 mortality, triazole-resistance profiles, and antifungal treatments were investigated. RESULTS: Of 196 patients with IA, 37 (19%) harbored a voriconazole-resistant infection. Hematological malignancy was the underlying disease in 103 (53%) patients, and 154 (79%) patients were started on voriconazole. Compared with voriconazole-susceptible cases, voriconazole resistance was associated with an increase in overall mortality of 21% on day 42 (49% vs 28%; P = .017) and 25% on day 90 (62% vs 37%; P = .0038). In non-intensive care unit patients, a 19% lower survival rate was observed in voriconazole-resistant cases at day 42 (P = .045). The mortality in patients who received appropriate initial voriconazole therapy was 24% compared with 47% in those who received inappropriate therapy (P = .016), despite switching to appropriate antifungal therapy after a median of 10 days. CONCLUSIONS: Voriconazole resistance was associated with an excess overall mortality of 21% at day 42 and 25% at day 90 in patients with IA. A delay in the initiation of appropriate antifungal therapy was associated with increased overall mortality.


Assuntos
Aspergillus fumigatus/genética , Doenças Autoimunes/tratamento farmacológico , Farmacorresistência Fúngica/genética , Neoplasias Hematológicas/tratamento farmacológico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Voriconazol/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Doenças Autoimunes/complicações , Doenças Autoimunes/microbiologia , Doenças Autoimunes/mortalidade , Criança , Pré-Escolar , Feminino , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/mortalidade , Humanos , Aspergilose Pulmonar Invasiva/complicações , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/mortalidade , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29632009

RESUMO

Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/metabolismo , Zinco/metabolismo , Animais , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Testes de Sensibilidade Microbiana , Pirazolonas/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-29229641

RESUMO

Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo, daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Oxigenoterapia Hiperbárica/métodos , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo
10.
Med Mycol ; 56(6): 703-710, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228287

RESUMO

No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.


Assuntos
Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Animais , Antifúngicos/administração & dosagem , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Azóis/administração & dosagem , Modelos Animais de Doenças , Farmacorresistência Fúngica/genética , Feminino , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mutação , Baço/microbiologia , Baço/patologia , Resultado do Tratamento , Triazóis/administração & dosagem , Triazóis/farmacologia , Virulência
11.
Artigo em Inglês | MEDLINE | ID: mdl-29084744

RESUMO

Host chitinases, chitotriosidase and acidic mammalian chitinase (AMCase), improved the antifungal activity of caspofungin (CAS) against Aspergillus fumigatus in vitro These chitinases are not constitutively expressed in the lung. Here, we investigated whether chitosan derivatives were able to induce chitinase activity in the lungs of neutropenic rats and, if so, whether these chitinases were able to prolong survival of rats with invasive pulmonary aspergillosis (IPA) or of rats with IPA and treated with CAS. An oligosaccharide-lactate chitosan (OLC) derivative was instilled in the left lung of neutropenic rats to induce chitotriosidase and AMCase activities. Rats instilled with OLC or with phosphate-buffered saline (PBS) were subsequently infected with A. fumigatus and then treated with suboptimal doses of CAS. Survival, histopathology, and galactomannan indexes were determined. Instillation of OLC resulted in chitotriosidase and AMCase activities. However, instillation of OLC did not prolong rat survival when rats were subsequently challenged with A. fumigatus In 5 of 7 rats instilled with OLC, the fungal foci in the lungs were smaller than those in rats instilled with PBS. Instillation of OLC did not significantly enhance the survival of neutropenic rats challenged with A. fumigatus and treated with a suboptimal dosage of CAS. Chitotriosidase and AMCase activities can be induced with OLC, but the presence of active chitinases in the lung did not prevent the development of IPA or significantly enhance the therapeutic outcome of CAS treatment.


Assuntos
Aspergillus fumigatus/metabolismo , Caspofungina/farmacologia , Quitinases/metabolismo , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Neutropenia/complicações , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Quitosana/química , Quitosana/farmacologia , Modelos Animais de Doenças , Feminino , Aspergilose Pulmonar Invasiva/metabolismo , Aspergilose Pulmonar Invasiva/prevenção & controle , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Testes de Sensibilidade Microbiana , Peso Molecular , Neutropenia/microbiologia , Ratos
12.
PLoS One ; 12(10): e0186374, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29045457

RESUMO

RATIONALE: Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). METHODS: Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. RESULTS: Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. CONCLUSIONS: VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.


Assuntos
Colecalciferol/metabolismo , Inflamação/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Animais , Aspergillus fumigatus/patogenicidade , Contagem de Células Sanguíneas , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Eosinófilos/patologia , Humanos , Inflamação/dietoterapia , Inflamação/patologia , Linfócitos/patologia , Camundongos , Lavagem Nasal , Pólipos Nasais/dietoterapia , Pólipos Nasais/patologia , Neutrófilos/patologia , Rinite/dietoterapia , Rinite/patologia , Sinusite/dietoterapia , Sinusite/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia
14.
Virulence ; 7(4): 465-76, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26854126

RESUMO

Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Histidina/biossíntese , Homeostase , Metais Pesados/metabolismo , Amitrol (Herbicida)/farmacologia , Animais , Aspergilose/sangue , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Córnea/microbiologia , Modelos Animais de Doenças , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histidina/farmacologia , Humanos , Hidroliases/genética , Ferro/metabolismo , Pulmão/microbiologia , Camundongos , Mariposas/microbiologia , Virulência/genética , Zinco/metabolismo
15.
Int J Clin Exp Pathol ; 8(6): 6800-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261565

RESUMO

OBJECTIVES: To investigate the therapeutic effects of OM-85 BV as an adjunctive treatment on experimental chronic rhinosinusitis (CRS) in mice. METHODOLOGY: Female BALB/c mice aged 8-12 weeks were sensitized and administrated by intranasal Aspergillus fumigatis (AF) three times per week for 1 week, 3 weeks, 2 months and 3 months (n = 10 each time point). The mice were randomly and equally assigned to four groups: normal control group, model group, OM-85-BV plus amoxicillin group, and isolated amoxicillin group. Inflammatory changes were determined by hematoxylin-eosin (HE) staining. The expression levels of suppressor of cytokine signaling (SOCS) 1, SOCS3, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in samples were assessed by using real-time PCR (RT-PCR) and Western blotting. RESULTS: There were significantly inflammatory and structural changes between the model and other groups. Compared to the model group, the mRNA expression levels of SOCS1, SOCS3, TNF-α, and IFN-γ were significantly decreased in OM-85-BV plus amoxicillin group and isolated amoxicillin group, along with the protein levels. CONCLUSION: The bacterial extract OM-85 BV is a low-cost alternatively adjunctive drug to treat CRS with simple oral administration, good safety, and few side effects.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aspergilose/tratamento farmacológico , Extratos Celulares/farmacologia , Rinite/tratamento farmacológico , Sinusite/tratamento farmacológico , Adjuvantes Imunológicos/administração & dosagem , Administração Oral , Amoxicilina/farmacologia , Animais , Antifúngicos/farmacologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Extratos Celulares/administração & dosagem , Doença Crônica , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Interferon gama/genética , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Rinite/genética , Rinite/imunologia , Rinite/metabolismo , Rinite/microbiologia , Sinusite/genética , Sinusite/imunologia , Sinusite/metabolismo , Sinusite/microbiologia , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Fungal Genet Biol ; 73: 29-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281782

RESUMO

We investigated the copper metabolism of Aspergillus fumigatus, which has not been characterized well. We cloned the putative copper transporters ctrA2 and ctrC from A. fumigatus and investigated the functions of these transporters in copper metabolism. Four putative copper transporters were identified in the A. fumigatus genome; ctrA2 and ctrC complemented CTR1 functionally and localized to the plasma membrane in Saccharomyces cerevisiae. ctrA2 and ctrC single-deletion mutants and a double-deletion mutant of ctrA2 and ctrC were constructed in A. fumigatus. The ctrA2 and ctrC double-deletion mutant exhibited a growth defect on Aspergillus minimal medium (AMM) supplemented with bathocuproine disulfonic acid (BCS) and was sensitive to H2O2. Furthermore, the deletion of ctrA2 and ctrC reduced superoxide dismutase (SOD) activity, laccase activity, and intracellular copper contents. The activities of the ctrA2 and ctrC genes were up-regulated by BCS treatment. In addition, the deletion of ctrA2 up-regulated ctrC and vice versa. ctrA2 and ctrC were localized to the A. fumigatus plasma membrane. Although ctrA2 and ctrC failed to affect the mouse survival rate, these genes affected conidial killing activity. Taken together, these results indicate that ctrA2 and ctrC may function as membrane transporters and that the involvement of these genes in pathogenicity merits further investigation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Ânions/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/ultraestrutura , Membrana Celular/metabolismo , Deleção de Genes , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Virulência/metabolismo
17.
Future Microbiol ; 9(5): 697-711, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24957095

RESUMO

Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis. Azole antifungals play an important role in the management of aspergillosis. However, over a decade, azole resistance in A. fumigatus isolates has been increasingly reported with variable prevalence worldwide and it is challenging the effective management of aspergillosis. The high mortality rates observed in patients with invasive aspergillosis caused by azole-resistant A. fumigatus (ARAF) isolates pose serious challenges to the clinical microbiologist for timely identification of resistance and appropriate therapeutic interventions. The majority of ARAF isolates contain alterations in the cyp51A gene; however, there have been increasing reports on non-cyp51A mutations contributing to azole resistant phenotypes. This review highlights the emergence and various mechanisms implicated in the development of azole resistance in A. fumigatus. We further present recent developments related to the environmental route in the emergence of ARAF isolates and discuss the therapeutic options available.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Azóis/uso terapêutico , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Colesterol/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Proteínas Fúngicas/biossíntese , Humanos , Itraconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação , Triazóis/uso terapêutico , Voriconazol/uso terapêutico
18.
Hum Gene Ther Clin Dev ; 24(2): 86-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23845071

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.


Assuntos
Gammaretrovirus/genética , Vetores Genéticos/metabolismo , Doença Granulomatosa Crônica/terapia , Animais , Aspergillus fumigatus/patogenicidade , Células Cultivadas , Metilação de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Vetores Genéticos/genética , Humanos , Pneumopatias/microbiologia , Pneumopatias/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fes/genética , Superóxidos/metabolismo
19.
Antimicrob Agents Chemother ; 57(4): 1866-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380732

RESUMO

The management of invasive aspergillosis (IA) has become more complicated due to the emergence of acquired azole resistance in Aspergillus fumigatus, which is associated with treatment failure and a mortality rate of 88%. Treatment with liposomal amphotericin B (L-AmB) may be a useful alternative to improve therapeutic outcome in azole-resistant IA. Four clinical A. fumigatus isolates obtained from patients with proven IA were studied in a nonneutropenic murine model of infection: a wild-type isolate without mutations in the cyp51A gene and three azole-resistant isolates harboring a single mutation at codon 220 (M220I) and tandem repeat mutations (a 34-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with substitutions at codon L98 [TR(34)/L98H] and a 46-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with mutation at codons Y121 and T289 [TR(46)/Y121F/T289A]), respectively. Female CD-1 mice were infected intravenously 24 h prior to the start of therapy. Groups of 11 mice were treated at days 1, 2, and 5 postchallenge with increasing 4-fold doses of L-AmB ranging from 0.004 to 16 mg/kg/day and observed for 14 days. Survival for all 4 isolates at day 14 was significantly better than that of controls. A dose-response relationship was observed independent of the azole resistance mechanism. The Hill-type model with a variable slope fitted the relationship between the dose and 14-day survival well for all isolates, with R(2) values of 0.95 (wild-type), 0.97 (M220I), 0.85 (TR(34)/L98H), and 0.94 (TR(46)/Y121F/T289A), respectively. Multiple logistic regression analysis confirmed that there was no significant difference between groups. The results of these experiments indicate that L-AmB was able to prolong survival in vivo in disseminated IA independent of the presence of an azole resistance mechanism in a dose-dependent manner, and therefore, they support a role for L-AmB in the treatment of azole-resistant IA.


Assuntos
Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Azóis/uso terapêutico , Anfotericina B/farmacologia , Animais , Aspergilose/metabolismo , Aspergillus fumigatus/genética , Farmacorresistência Fúngica/genética , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Camundongos , Testes de Sensibilidade Microbiana
20.
J Infect Dis ; 207(7): 1066-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303813

RESUMO

In invasive pulmonary aspergillosis, direct invasion and occlusion of pulmonary vasculature by Aspergillus hyphae causes tissue hypoxia, which is enhanced by secreted fungal metabolites that downregulate compensatory angiogenic signaling pathways. We assessed the effects of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) on survival rates, fungal burden, and in situ angiogenesis in a murine invasive pulmonary aspergillosis model. bFGF and VEGF monotherapy significantly increased survival rates and potentiated the activity of amphotericin B. bFGF-containing regimens were associated with reduced tissue fungal burdens. bFGF and VEGF reversed the antiangiogenic activity of Aspergillus fumigatus; however, VEGF induced the formation of immature neovessels, providing an explanation for its lesser efficacy. Treatment with bFGF plus amphotericin B was associated with neutrophil influx into Aspergillus-infected pulmonary tissue, suggesting that this combination limits fungal growth through neutrophil trafficking. Vasculogenic pathways are unexplored targets for the treatment of invasive pulmonary aspergillosis and may potentiate both innate immunity and antifungal drug activity against A. fumigatus.


Assuntos
Indutores da Angiogênese/uso terapêutico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/patogenicidade , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Anfotericina B/uso terapêutico , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Imuno-Histoquímica , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos , Proteínas Recombinantes/uso terapêutico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA