RESUMO
AIMS: Current treatments of ventricular arrhythmias rely on modulation of cardiac electrical function through drugs, ablation or electroshocks, which are all non-biological and rather unspecific, irreversible or traumatizing interventions. Optogenetics, however, is a novel, biological technique allowing electrical modulation in a specific, reversible and trauma-free manner using light-gated ion channels. The aim of our study was to investigate optogenetic termination of ventricular arrhythmias in the whole heart. METHODS AND RESULTS: Systemic delivery of cardiotropic adeno-associated virus vectors, encoding the light-gated depolarizing ion channel red-activatable channelrhodopsin (ReaChR), resulted in global cardiomyocyte-restricted transgene expression in adult Wistar rat hearts allowing ReaChR-mediated depolarization and pacing. Next, ventricular tachyarrhythmias (VTs) were induced in the optogenetically modified hearts by burst pacing in a Langendorff setup, followed by programmed, local epicardial illumination. A single 470-nm light pulse (1000 ms, 2.97 mW/mm2) terminated 97% of monomorphic and 57% of polymorphic VTs vs. 0% without illumination, as assessed by electrocardiogram recordings. Optical mapping showed significant prolongation of voltage signals just before arrhythmia termination. Pharmacological action potential duration (APD) shortening almost fully inhibited light-induced arrhythmia termination indicating an important role for APD in this process. CONCLUSION: Brief local epicardial illumination of the optogenetically modified adult rat heart allows contact- and shock-free termination of ventricular arrhythmias in an effective and repetitive manner after optogenetic modification. These findings could lay the basis for the development of fundamentally new and biological options for cardiac arrhythmia management.
Assuntos
Arritmias Cardíacas/terapia , Channelrhodopsins/farmacologia , Optogenética/métodos , Fototerapia/métodos , Adenoviridae , Animais , Channelrhodopsins/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos , Ativação do Canal Iônico/efeitos da radiação , Luz , Miócitos Cardíacos/fisiologia , Ratos Wistar , Taquicardia Ventricular/terapia , Transgenes/fisiologiaRESUMO
Following brief stimulation, macroscopic NMDA receptor currents decay with biphasic kinetics that is believed to reflect glutamate dissociation and receptor desensitization. We found that the fast and slow decay components arise from the simultaneous deactivation of receptor populations that gate with short and long openings, respectively. Because individual receptors switched infrequently between gating modes, the relaxation time course was largely determined by the proportion of channels in each gating mode at the time of stimulation.
Assuntos
Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Estimulação Elétrica/métodos , Embrião de Mamíferos , Lobo Frontal/citologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/efeitos da radiação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Fatores de Tempo , Transfecção/métodosRESUMO
Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone--an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.
Assuntos
Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Cálcio/farmacologia , Escuridão , Meio Ambiente , Umidade , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/efeitos da radiação , Luz , Proteínas de Membrana/genética , Óxido Nítrico/metabolismo , Cebolas/metabolismo , Oócitos , Ozônio/metabolismo , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Nicotiana/citologia , Nicotiana/metabolismo , Água/metabolismo , XenopusRESUMO
The contributions of the hyperpolarization-activated current, I(h), to generation of rhythmic activities are well described for various central neurons, particularly in thalamocortical circuits. In the present study, we investigated effects of a general anesthetic, propofol, on native I(h) in neurons of thalamus and cortex and on the corresponding cloned HCN channel subunits. Whole cell voltage-clamp recordings from mouse brain slices identified neuronal I(h) currents with fast activation kinetics in neocortical pyramidal neurons and with slower kinetics in thalamocortical relay cells. Propofol inhibited the fast-activating I(h) in cortical neurons at a clinically relevant concentration (5 microM); inhibition of I(h) involved a hyperpolarizing shift in half-activation voltage (DeltaV1/2 approximately -9 mV) and a decrease in maximal available current (approximately 36% inhibition, measured at -120 mV). With the slower form of I(h) expressed in thalamocortical neurons, propofol had no effect on current activation or amplitude. In heterologous expression systems, 5 muM propofol caused a large shift in V1/2 and decrease in current amplitude in homomeric HCN1 and linked heteromeric HCN1-HCN2 channels, both of which activate with fast kinetics but did not affect V1/2 or current amplitude of slowly activating homomeric HCN2 channels. With GABA(A) and glycine receptor channels blocked, propofol caused membrane hyperpolarization and suppressed action potential discharge in cortical neurons; these effects were occluded by the I(h) blocker, ZD-7288. In summary, these data indicate that propofol selectively inhibits HCN channels containing HCN1 subunits, such as those that mediate I(h) in cortical pyramidal neurons-and they suggest that anesthetic actions of propofol may involve inhibition of cortical neurons and perhaps other HCN1-expressing cells.
Assuntos
Anticonvulsivantes/farmacologia , Córtex Cerebral/citologia , Canais Iônicos/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Propofol/farmacologia , Células Piramidais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Feminino , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Canais Iônicos/classificação , Canais Iônicos/fisiologia , Canais Iônicos/efeitos da radiação , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Inibição Neural/fisiologia , Vias Neurais/citologia , Oócitos , Técnicas de Patch-Clamp/métodos , Canais de Potássio , Pirimidinas/farmacologia , Ratos , Estricnina/farmacologia , Tálamo/citologia , Fatores de Tempo , XenopusRESUMO
The question of minimum detection limits for biological processes sensitive to membrane potential perturbations has arisen in various contexts. Of special interest are the prediction of theoretical limits for sensory perception processes and for possible biological effects of environmental or therapeutic electric and magnetic fields. A new method is presented here, addressing the particular case in which perturbations of membrane potential affect the gating rate probability of voltage-sensitive ion channels. Using a two-state model for channel gating, the influence of the perturbing potential on the mean fraction of open channels is approximated by a Boltzmann distribution, and integrated over time to obtain a quantity proportional to the net change in expected charge transfer through the membrane. This change in net charge transfer (the signal, S) is compared to the expected root mean variance in charge transfer (the noise, N) due to random channel gating. Using a nominal criterion of S/N = 1, a model is developed for predicting the minimum time and number of ion channels necessary to detect a given membrane potential. Example calculations, carried out for a gating charge of 6, indicate that a 1 microV induced membrane potential can be detected after 10 ms by an ensemble of less than 10(8) ion channels.