Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931923

RESUMO

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Assuntos
Anticarcinógenos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/uso terapêutico , Fitoestrógenos/uso terapêutico , Atlas como Assunto , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/virologia , Ciclina D1/genética , Ciclina D1/imunologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Família Multigênica , Farmacologia em Rede/métodos , PPAR gama/genética , PPAR gama/imunologia , Farmacogenética/métodos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais
2.
Neuroimage ; 245: 118759, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838750

RESUMO

Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Gânglios da Base/anatomia & histologia , Tronco Encefálico/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Hipotálamo/anatomia & histologia , Tálamo/anatomia & histologia , Tonsila do Cerebelo/diagnóstico por imagem , Animais , Atlas como Assunto , Gânglios da Base/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Técnicas Histológicas , Hipotálamo/diagnóstico por imagem , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem
3.
Cereb Cortex ; 31(10): 4642-4651, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33999140

RESUMO

The corpus callosum (CC), the anterior (AC), and the posterior (PC) commissures are the principal axonal fiber bundle pathways that allow bidirectional communication between the brain hemispheres. Here, we used the Allen mouse brain connectivity atlas and high-resolution diffusion-weighted MRI (DWI) to investigate interhemispheric fiber bundles in C57bl6/J mice, the most commonly used wild-type mouse model in biomedical research. We identified 1) commissural projections from the primary motor area through the AC to the contralateral hemisphere; and 2) intrathalamic interhemispheric fiber bundles from multiple regions in the frontal cortex to the contralateral thalamus. This is the first description of direct interhemispheric corticothalamic connectivity from the orbital cortex. We named these newly identified crossing points thalamic commissures. We also analyzed interhemispheric connectivity in the Balb/c mouse model of dysgenesis of the corpus callosum (CCD). Relative to C57bl6/J, Balb/c presented an atypical and smaller AC and weaker interhemispheric corticothalamic communication. These results redefine our understanding of interhemispheric brain communication. Specifically, they establish the thalamus as a regular hub for interhemispheric connectivity and encourage us to reinterpret brain plasticity in CCD as an altered balance between axonal reinforcement and pruning.


Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Substância Branca/fisiologia , Animais , Atlas como Assunto , Axônios/fisiologia , Imagem de Difusão por Ressonância Magnética , Lateralidade Funcional/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia
4.
Nature ; 598(7879): 144-150, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33184512

RESUMO

Cortical neurons exhibit extreme diversity in gene expression as well as in morphological and electrophysiological properties1,2. Most existing neural taxonomies are based on either transcriptomic3,4 or morpho-electric5,6 criteria, as it has been technically challenging to study both aspects of neuronal diversity in the same set of cells7. Here we used Patch-seq8 to combine patch-clamp recording, biocytin staining, and single-cell RNA sequencing of more than 1,300 neurons in adult mouse primary motor cortex, providing a morpho-electric annotation of almost all transcriptomically defined neural cell types. We found that, although broad families of transcriptomic types (those expressing Vip, Pvalb, Sst and so on) had distinct and essentially non-overlapping morpho-electric phenotypes, individual transcriptomic types within the same family were not well separated in the morpho-electric space. Instead, there was a continuum of variability in morphology and electrophysiology, with neighbouring transcriptomic cell types showing similar morpho-electric features, often without clear boundaries between them. Our results suggest that neuronal types in the neocortex do not always form discrete entities. Instead, neurons form a hierarchy that consists of distinct non-overlapping branches at the level of families, but can form continuous and correlated transcriptomic and morpho-electrical landscapes within families.


Assuntos
Perfilação da Expressão Gênica , Córtex Motor/citologia , Neurônios/classificação , Neurônios/metabolismo , Transcriptoma , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Lisina/análogos & derivados , Lisina/análise , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Neurônios/citologia , Especificidade de Órgãos , Técnicas de Patch-Clamp , Fenótipo , Análise de Sequência de RNA , Análise de Célula Única , Coloração e Rotulagem
5.
Nat Neurosci ; 23(11): 1421-1432, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989295

RESUMO

Brain atlases are fundamental to understanding the topographic organization of the human brain, yet many contemporary human atlases cover only the cerebral cortex, leaving the subcortex a terra incognita. We use functional MRI (fMRI) to map the complex topographic organization of the human subcortex, revealing large-scale connectivity gradients and new areal boundaries. We unveil four scales of subcortical organization that recapitulate well-known anatomical nuclei at the coarsest scale and delineate 27 new bilateral regions at the finest. Ultrahigh field strength fMRI corroborates and extends this organizational structure, enabling the delineation of finer subdivisions of the hippocampus and the amygdala, while task-evoked fMRI reveals a subtle subcortical reorganization in response to changing cognitive demands. A new subcortical atlas is delineated, personalized to represent individual differences and used to uncover reproducible brain-behavior relationships. Linking cortical networks to subcortical regions recapitulates a task-positive to task-negative axis. This new atlas enables holistic connectome mapping and characterization of cortico-subcortical connectivity.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Adulto , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem
6.
Brain Struct Funct ; 225(6): 1777-1803, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556476

RESUMO

The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.


Assuntos
Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Animais , Atlas como Assunto , Macaca mulatta , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia
7.
J Neurosurg ; 134(3): 1054-1063, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384279

RESUMO

OBJECTIVE: The anterior thalamic nucleus (ATN) is a common target for deep brain stimulation (DBS) for the treatment of drug-refractory epilepsy. However, no atlas-based optimal DBS (active contacts) target within the ATN has been definitively identified. The object of this retrospective study was to analyze the relationship between the active contact location and seizure reduction to establish an atlas-based optimal target for ATN DBS. METHODS: From among 25 patients who had undergone ATN DBS surgery for drug-resistant epilepsy between 2016 and 2018, those who had follow-up evaluations for more than 1 year were eligible for study inclusion. After an initial stimulation period of 6 months, patients were classified as responsive (≥ 50% median decrease in seizure frequency) or nonresponsive (< 50% median decrease in seizure frequency) to treatment. Stimulation parameters and/or active contact positions were adjusted in nonresponsive patients, and their responsiveness was monitored for at least 1 year. Postoperative CT scans were coregistered nonlinearly with preoperative MR images to determine the center coordinate and atlas-based anatomical localizations of all active contacts in the Montreal Neurological Institute (MNI) 152 space. RESULTS: Nineteen patients with drug-resistant epilepsy were followed up for at least a year following bilateral DBS electrode implantation targeting the ATN. Active contacts located more adjacent to the center of gravity of the anterior half of the ATN volume, defined as the anterior center (AC), were associated with greater seizure reduction than those not in this location. Intriguingly, the initially nonresponsive patients could end up with much improved seizure reduction by adjusting the active contacts closer to the AC at the final postoperative follow-up. CONCLUSIONS: Patients with stimulation targeting the AC may have a favorable seizure reduction. Moreover, the authors were able to obtain additional good outcomes after electrode repositioning in the initially nonresponsive patients. Purposeful and strategic trajectory planning to target this optimal region may predict favorable outcomes of ATN DBS.


Assuntos
Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/terapia , Tálamo/patologia , Adulto , Núcleos Anteriores do Tálamo/cirurgia , Atlas como Assunto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Eletrodos Implantados , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
8.
Hum Brain Mapp ; 41(12): 3266-3283, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32314470

RESUMO

Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision-making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross-species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two-stage parcellation of the region to identify six distinct structures within the region on the basis of data-driven classification of functional connectivity patterns obtained using the meta-analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting-state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical "default mode network" regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.


Assuntos
Tonsila do Cerebelo , Mapeamento Encefálico , Rede de Modo Padrão , Giro do Cíngulo , Hipocampo , Rede Nervosa/fisiologia , Córtex Pré-Frontal , Tálamo , Estriado Ventral , Adulto , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Atlas como Assunto , Conectoma , Rede de Modo Padrão/anatomia & histologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Estriado Ventral/anatomia & histologia , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiologia
9.
Med Hist ; 64(1): 116-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31933505

RESUMO

In early twentieth-century France, syphilis and its controversial status as a hereditary disease reigned as a chief concern for physicians and public health officials. As syphilis primarily presented visually on the surface of the skin, its study fell within the realms of both dermatologists and venereologists, who relied heavily on visual evidence in their detection, diagnosis, and treatment of the disease. Thus, in educational textbooks, atlases, and medical models, accurately reproducing the visible signposts of syphilis - the colour, texture, and patterns of primary chancres or secondary rashes - was of preeminent importance. Photography, with its potential claims to mechanical objectivity, would seem to provide the logical tool for such representations. Yet photography's relationship to syphilographie warrants further unpacking. Despite the rise of a desire for mechanical objectivity charted in the late nineteenth century, artist-produced, three-dimensional, wax-cast moulages coexisted with photographs as significant educational tools for dermatologists; at times, these models were further mediated through photographic reproduction in texts. Additionally, the rise of phototherapy complicated this relationship by fostering the clinical equation of the light-sensitive photographic plate with the patient's skin, which became the photographic record of disease and successful treatment. This paper explores these complexities to delineate a more nuanced understanding of objectivity vis-à-vis photography and syphilis. Rather than a desire to produce an unbiased image, fin-de-siècle dermatologists marshalled the photographic to exploit the verbal and visual rhetoric of objectivity, authority, and persuasion inextricably linked to culturally constructed understandings of the photograph. This rhetoric was often couched in the Peircean concept of indexicality, which physicians formulated through the language of witness, testimony, and direct connection.


Assuntos
Anatomia Artística/história , Ilustração Médica/história , Modelos Anatômicos , Fotografação/história , Sífilis/história , Atlas como Assunto/história , Distinções e Prêmios , Dermatologia/educação , Dermatologia/história , França , Historiografia , História do Século XIX , História do Século XX , Humanos , Sífilis/patologia , Sífilis Congênita/história , Venereologia/educação , Venereologia/história
10.
BMC Genomics ; 20(1): 879, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747875

RESUMO

BACKGROUND: Circadian rhythm, regulated by both internal and external environment of the body, is a multi-scale biological oscillator of great complexity. On the molecular level, thousands of genes exhibit rhythmic transcription, which is both organ- and species-specific, but it remains a mystery whether some common factors could potentially explain their rhythmicity in different organs. In this study we address this question by analyzing the transcriptome data in 12 mouse organs to determine such major impacting factors. RESULTS: We found a strong positive correlation between the transcriptional level and rhythmic amplitude of circadian rhythmic genes in mouse organs. Further, transcriptional level could explain over 70% of the variation in amplitude. In addition, the functionality and tissue specificity were not strong predictors of amplitude, and the expression level of rhythmic genes was linked to the energy consumption associated with transcription. CONCLUSION: Expression level is a single major factor impacts the behavior of rhythmic genes in mouse organs. This single determinant implicates the importance of rhythmic expression itself on the design of the transcriptional system. So, rhythmic regulation of highly expressed genes can effectively reduce the energetic cost of transcription, facilitating the long-term adaptive evolution of the entire genetic system.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , Transcriptoma , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Aorta/metabolismo , Atlas como Assunto , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/classificação , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Hipotálamo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos
11.
Nat Neurosci ; 22(11): 1925-1935, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31527803

RESUMO

The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.


Assuntos
Córtex Cerebral/anatomia & histologia , Tálamo/anatomia & histologia , Potenciais de Ação , Animais , Atlas como Assunto , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Tálamo/metabolismo , Tálamo/fisiologia , Transcriptoma
12.
Chin J Integr Med ; 25(11): 803-811, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31187419

RESUMO

Tibetan medicine, one of the time-honored medical systems in the world, has increasingly been receiving attention the world over. Tibetan medical paintings (TMP, tib. Sman thang) has become one of the focal points in the studies of this medical system. To date, there are many atlases and publications on TMP, which are principally based on the two major sets of TMP series existing today in the world, the Lhasa set and the Buryat set. It has been found that the Buryat set is based on the Lhasa set, which was brought in late 19th to the first half of the 20th century from Tibet to Buryatia, Russia. A careful investigation on the basic structure of the two sets reveals that there are many differences between the two sets of paintings, including the total number of the paintings involved, of which some are missing in one set, the details of the captions of some of the paintings, the existence of the 80th painting and its supervisor, and the overall order of the entire set, etc. The details of the differences are elaborated and discussed, and the prospective of developing the research to arrive at a standard and perfect TMP set in the future is also analyzed and anticipated.


Assuntos
Ilustração Médica , Medicina nas Artes , Medicina Tradicional Tibetana/história , Pinturas , Anatomia Artística/história , Atlas como Assunto/história , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , Humanos , Ilustração Médica/história , Medicina nas Artes/história , Pinturas/história , Religião e Medicina , Tibet
13.
J Neurol Neurosurg Psychiatry ; 90(10): 1078-1090, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129620

RESUMO

BACKGROUND: Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS: We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS: Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION: The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/diagnóstico por imagem , Cápsula Interna/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Síndrome de Tourette/terapia , Adolescente , Adulto , Atlas como Assunto , Estudos de Coortes , Comportamento Compulsivo/psicologia , Feminino , Humanos , Núcleos Intralaminares do Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Comportamento Obsessivo/psicologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/psicologia , Resultado do Tratamento , Adulto Jovem
14.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023427

RESUMO

Classification and delineation of the motor-related nuclei in the human thalamus have been the focus of numerous discussions for a long time. Difficulties in finding consensus have for the most part been caused by paucity of direct experimental data on connections of individual nuclear entities. Kultas-Ilinsky et al. (2011) showed that distribution of glutamic acid decarboxylase isoform 65 (GAD65), the enzyme that synthesizes inhibitory neurotransmitter γ-aminobutyric acid, is a reliable marker that allows to delineate connectionally distinct nuclei in the human motor thalamus, namely the territories innervated by nigral, pallidal, and cerebellar afferents. We compared those immunocytochemical staining patterns with underlying cytoarchitecture and used the latter to outline the three afferent territories in a continuous series of sagittal Nissl-stained sections of the human thalamus. The 3D volume reconstructed from the outlines was placed in the Talairach stereotactic coordinate system relative to the intercommissural line and sectioned in three stereotactic planes to produce color-coded nuclear maps. This 3D coordinate-based atlas was coregistered to the Montreal Neurological Institute (MNI-152) space. The current report proposes a simplified nomenclature of the motor-related thalamic nuclei, presents images of selected histological sections and stereotactic maps illustrating topographic relationships of these nuclei as well as their relationship with adjacent somatosensory afferent region. The data are useful in different applications such as functional MRI and diffusion tractography. The 3D dataset is publicly available under an open license and can also be applicable in clinical interventions in the thalamus.


Assuntos
Imageamento Tridimensional/métodos , Tálamo/anatomia & histologia , Vias Aferentes/anatomia & histologia , Atlas como Assunto , Cerebelo/anatomia & histologia , Feminino , Globo Pálido/anatomia & histologia , Humanos , Masculino , Técnicas de Rastreamento Neuroanatômico/métodos , Substância Negra/anatomia & histologia
15.
Kidney Int ; 92(1): 47-66, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28434822

RESUMO

Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.


Assuntos
Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Atlas como Assunto , Pré-Escolar , Meios de Contraste/efeitos adversos , Meios de Contraste/farmacocinética , Feminino , Óxido Ferroso-Férrico/efeitos adversos , Óxido Ferroso-Férrico/farmacocinética , Hematínicos/administração & dosagem , Humanos , Rim/fisiopatologia , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Eliminação Renal , Insuficiência Renal Crônica/fisiopatologia , Reprodutibilidade dos Testes
17.
Brain ; 139(Pt 3): 829-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26912646

RESUMO

It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients.


Assuntos
Anatomia Artística/métodos , Atlas como Assunto , Lesões Encefálicas/diagnóstico , Mapeamento Encefálico/métodos , Plasticidade Neuronal/fisiologia , Adolescente , Adulto , Idoso , Lesões Encefálicas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
18.
Brain Imaging Behav ; 9(3): 550-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26153468

RESUMO

The thalamo-cortical resting state functional connectivity of seven sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6 ± 3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and the posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work.


Assuntos
Lesões Encefálicas/fisiopatologia , Tálamo/fisiopatologia , Doença Aguda , Adulto , Atlas como Assunto , Lesões Encefálicas/psicologia , Mapeamento Encefálico , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Estudos Prospectivos , Espectroscopia de Prótons por Ressonância Magnética , Descanso , Fatores de Tempo
19.
Hum Brain Mapp ; 36(8): 3117-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959791

RESUMO

OBJECTIVES: Although diffusion tensor imaging (DTI) and postmortem dissections improved the knowledge of white matter (WM) anatomy, functional information is lacking. Our aims are: to provide a subcortical atlas of human brain functions; to elucidate the functional roles of different bundles; to provide a probabilistic resection map of WM. EXPERIMENTAL DESIGN: We studied 130 patients who underwent awake surgery for gliomas (82 left; 48 right) with electrostimulation mapping at cortical and subcortical levels. Different aspects of language, sensori-motor, spatial cognition, and visual functions were monitored. 339 regions of interest (ROIs) including the functional response errors collected during stimulation were co-registered in the MNI space, as well as the resections' areas and residual tumors. Functional response errors and resection areas were matched with DTI and cortical atlases. Subcortical maps for each function and a probability map of resection were computed. PRINCIPAL OBSERVATIONS: The medial part of dorsal stream (arcuate fasciculus) subserves phonological processing; its lateral part [indirect anterior portion of the superior longitudinal fascicle (SLF)] subserves speech planning. The ventral stream subserves language semantics and matches with the inferior fronto-occipital fascicle. Reading deficits match with the inferior longitudinal fascicle. Anomias match with the indirect posterior portion of the SLF. Frontal WM underpins motor planning and execution. Right parietal WM subserves spatial cognition. Sensori-motor and visual fibers were the most preserved bundles. CONCLUSIONS: We report the first anatomo-functional atlas of WM connectivity in humans by correlating cognitive data, electrostimulation, and DTI. We provide a valuable tool for cognitive neurosciences and clinical applications.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto , Encéfalo/cirurgia , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão , Estimulação Elétrica/métodos , Feminino , Glioma/patologia , Glioma/fisiopatologia , Glioma/cirurgia , Humanos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA