Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Chromatogr Sci ; 59(4): 371-380, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33434916

RESUMO

Herbals that are widely consumed as therapeutic alternatives to conventional drugs for cardiovascular diseases, may lead to herb-drug interactions (HDIs). Atorvastatin (ATR) is drug of choice for hyperlipidemia and is extensively metabolized through CYP3A4 enzyme. Thus, we postulate that concomitant administration of ATR with piperine (PIP, potent inhibitor of CYP3A4 enzyme)/ridayarishta (RID, cardiotonic herbal formulations containing PIP) may lead to potential HDI. A simple, accurate, sensitive high-performance liquid chromatography-photodiode array detection method using Kromasil-100 C18 column, mobile phase acetonitrile: 30 mM phosphate buffer (55:45 v/v) pH 4.5 with flow rate gradient programming was developed to study the potential HDI in rats. Method was found to be linear (2-100 ng/mL) with Lower Limit of Detection (LLOD) 2 ng/mL. The precision (%CV < 15%), accuracy (-1.0 to -10% R.E) with recoveries above 90% from rat plasma of ATR and IS were obtained. The pharmacokinetic (PK) interactions studies on co-administration of ATR (8.4 mg/kg, p.o.) with PIP (35 mg/kg, p.o.), demonstrated a threefold increase in Cmax of ATR (P < 0.01) with significant increase in AUC0-t/AUC0-∞ compared to ATR alone indicating potential PK-HDI. However co-administration of RID (4.2 mL/kg, p.o.) showed less significant changes (P > 0.05) indicating low HDI. The pharmacodynamic effects/interactions study (TritonX-100 induced hyperlipidemic model in rats) suggested no significant alterations in the lipid profile on co-administration of PIP/RID with ATR, indicating that there may be no significant pharmacodynamic interactions.


Assuntos
Alcaloides , Atorvastatina , Benzodioxóis , Cromatografia Líquida de Alta Pressão/métodos , Piperidinas , Alcamidas Poli-Insaturadas , Alcaloides/sangue , Alcaloides/química , Alcaloides/farmacocinética , Animais , Atorvastatina/sangue , Atorvastatina/química , Atorvastatina/farmacocinética , Benzodioxóis/sangue , Benzodioxóis/química , Benzodioxóis/farmacocinética , Interações Ervas-Drogas , Limite de Detecção , Modelos Lineares , Piperidinas/sangue , Piperidinas/química , Piperidinas/farmacocinética , Extratos Vegetais/sangue , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Alcamidas Poli-Insaturadas/sangue , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacocinética , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
2.
Nanoscale ; 12(17): 9541-9556, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314997

RESUMO

Atherosclerosis is associated with inflammation in the arteries, which is a major cause of heart attacks and strokes. Reducing the extent of local inflammation at atherosclerotic plaques can be an attractive strategy to combat atherosclerosis. While statins can exhibit direct anti-inflammatory activities, the high dose required for such a therapy renders it unrealistic due to their low systemic bioavailabilities and potential side effects. To overcome this, a new hyaluronan (HA)-atorvastatin (ATV) conjugate was designed with the hydrophobic statin ATV forming the core of the nanoparticle (HA-ATV-NP). The HA on the NPs can selectively bind with CD44, a cell surface receptor overexpressed on cells residing in atherosclerotic plaques and known to play important roles in plaque development. HA-ATV-NPs exhibited significantly higher anti-inflammatory effects on macrophages compared to ATV alone in vitro. Furthermore, when administered in an apolipoprotein E (ApoE)-knockout mouse model of atherosclerosis following a 1-week treatment regimen, HA-ATV-NPs markedly decreased inflammation in advanced atherosclerotic plaques, which were monitored through contrast agent aided magnetic resonance imaging. These results suggest CD44 targeting with HA-ATV-NPs is an attractive strategy to reduce harmful inflammation in atherosclerotic plaques.


Assuntos
Anti-Inflamatórios/administração & dosagem , Atorvastatina/administração & dosagem , Ácido Hialurônico/química , Nanopartículas/administração & dosagem , Placa Aterosclerótica/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Atorvastatina/química , Atorvastatina/farmacologia , Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Nanopartículas/química , Nanopartículas/metabolismo , Placa Aterosclerótica/patologia , Células RAW 264.7
3.
Bioorg Chem ; 85: 413-419, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30665035

RESUMO

Retinoid X receptor alpha (RXRα), a central member of the nuclear receptor superfamily and a key regulator of many signal transduction pathways, has been an attractive drug target. We previously discovered that an N-terminally truncated form of RXRα can be induced by specific ligands to form homotetramers, which, as a result of conformational selection, forms the basis for inhibiting the nongenomic activation of RXRα. Here, we report the identification and characterization of atorvastatin as a new RXRα tetramer stabilizer by using structure-based virtual screening and demonstrate that virtual library screening can be used to aid in identifying RXRα ligands that can induce its tetramerization. In this study, docking was applied to screen the FDA-approved small molecule drugs in the DrugBank 4.0 collection. Two compounds were selected and purchased for testing. We showed that the selected atorvastatin could bind to RXRα to promote RXRα-LBD tetramerization. We also showed that atorvastatin possessed RXRα-dependent apoptotic effects. In addition, we used a chemical approach to aid in the studies of the binding mode of atorvastatin.


Assuntos
Atorvastatina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Receptor X Retinoide alfa/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Atorvastatina/química , Atorvastatina/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Sulindaco/análogos & derivados , Sulindaco/metabolismo
4.
Biomed Microdevices ; 20(3): 53, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946758

RESUMO

Atorvastatin is a lipid lowering agent with poor oral bioavailability (12%) because of poor solubility and extensive first pass hepatic metabolism. In order to overcome these issues, atorvastatin loaded solid lipid nanoparticles (ATOR-SLNs) were prepared by using glyceryl tripalmitate as lipid carrier, poloxamer 407 as surfactant and soya lecithin as emulsifier. The purpose of this work was to optimize the formulation with the application of response surface methodology to improve the physicochemical properties. The central composite rotatable design consisting of three factored factorial design with three levels was used for the optimization of the formulations. The optimized formulation was composed of drug/lipid ratio of 1:3.64, surfactant concentration of 1.5% with 5 min time for sonication. Fourier transforms infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies confirmed the compatibility of drug and lipid in the formulation. The optimized ATOR- SLNs showed almost spherical shape with a mean particle size of 338.5 nm, zeta potential of -24.7mV, DL of 17.7% and EE of 81.06% respectively. The in vitro drug release study showed a burst release at the initial stage followed by the prolongation of drug release from lipid matrix. Stability study revealed that ATOR-SLNs were more stable at 4±2˚C when compared with storage at 25±2˚C/60±5% RH during the six months storage period. These results indicated that the developed ATOR-SLNs is a promising approach for increment of bioavailability by improving the physicochemical properties.


Assuntos
Atorvastatina/química , Atorvastatina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Lecitinas/química , Lipídeos/química , Tamanho da Partícula , Poloxâmero/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Tensoativos/química
5.
IET Nanobiotechnol ; 11(1): 96-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28476969

RESUMO

Atorvastatin known to be a potential inhibitor of HMG-CoA reductase involved in the synthesis of cholesterol. It is touted as miracle drug due to its profound effect in decreasing the low-density lipoproteins in blood. Unfortunately, the high dosage used poses side-effects relatively in comparison to other statins. On the other hand, curcumin has a diverse therapeutic potential in health and disease. However, the poor aqueous solubility and low bioavailability hinders the therapeutic potential of it when administrated orally. Therefore, it was thought to minimise the frequency of atorvastatin doses to avoid the possibility of drug resistance and also to overcome the limitations of curcumin for desirable therapeutic effects by using nanocarriers in drug delivery. In this investigation, synergistic effect of atorvastatin and curcumin nanocarriers was encapsulated by chitosan polymer. The chitosan nanocarriers prepared by ionic gelation method were characterised for their particle size, zeta potential, and other parameters. The drug-loaded nanocarriers exhibited good encapsulation efficiency (74.25%) and showed a slow and sustained release of atorvastatin and curcumin 60.36 and 61.44%, respectively, in a span of 48 h. The drug-loaded nanocarriers found to be haemocompatible and qualified for drug delivery in atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Atorvastatina/administração & dosagem , Quitosana/química , Curcumina/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Nanocápsulas/administração & dosagem , Administração Oral , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/química , Atorvastatina/química , Preparações de Ação Retardada/síntese química , Difusão , Combinação de Medicamentos , Composição de Medicamentos/métodos , Humanos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Tamanho da Partícula
6.
J Control Release ; 254: 10-22, 2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28344015

RESUMO

CONTEXT: Atorvastatin calcium (ATV), a cholesterol-lowering agent, suffers from poor systemic availability (14%) after oral administration in addition to other side effects on the gastrointestinal tract, liver and muscle. OBJECTIVE: The goal of the present investigation was to improve ATV bioavailability and overcome complications attendant with peroral administration by developing a new nanovesicular system encapsulating ATV for its delivery via the transdermal route. METHODS: The vesicular systems were prepared by incorporating different polyethylene glycol fatty acid esters such as Labrasol, Cremophor EL, Gelucire 44/14 and Tween 80 as edge activators (EAs) in the lipid bilayer. The effect of the phosphatidylcholine (PC):EA molar ratio on the physicochemical properties of the vesicles was investigated. The pharmacokinetic studies of the optimized formulation were evaluated in rats. The optimized formulation was tested in poloxamer 407-induced hyperlipidemic rats. The plasma lipid profile, activity of liver enzymes, and oxidative stress parameters were measured using commercially available kits. RESULTS: The results revealed high ATV entrapment efficiency (EE%) ranging from 55.62 to 83.91%. The formulations that contained Labrasol showed the highest EE%. The mean diameter of the vesicles was in the range of 186-583nm. T8 containing Gelucire 44/14 as an EA in the molar ratio of 15:1 (PC:EA) gave the smallest size and exhibited the best permeation parameters across the skin. The pharmacokinetic studies revealed that about three times statistically significant (p<0.05) improvement in bioavailability, after transdermal administration of nanotransfersomal ATV gel compared to oral ATV suspension. The transdermal vesicular system exhibited a significant decrease in plasma total cholesterol, triglycerides and LDL cholesterol comparable to oral ATV. Additionally, it lowered the malondialdehyde levels in plasma and abolished the increase in liver enzyme activity. CONCLUSION: The results obtained suggest that the proposed transdermal vesicular system can serve as a promising alternative means for delivery of ATV.


Assuntos
Atorvastatina/administração & dosagem , Ácidos Graxos/química , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Hiperlipidemias/tratamento farmacológico , Nanocápsulas/química , Poloxâmero , Polietilenoglicóis/química , Administração Cutânea , Animais , Atorvastatina/química , Atorvastatina/toxicidade , Disponibilidade Biológica , Química Farmacêutica , Colesterol/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ésteres/química , Glicerídeos/química , Glicerol/análogos & derivados , Glicerol/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Hiperlipidemias/induzido quimicamente , Lecitinas/química , Lecitinas/metabolismo , Fígado/efeitos dos fármacos , Masculino , Tamanho da Partícula , Permeabilidade , Polietilenoglicóis/metabolismo , Polissorbatos/química , Ratos Wistar , Absorção Cutânea , Adesivo Transdérmico
7.
Bioorg Med Chem Lett ; 26(8): 1881-4, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988303

RESUMO

Cerebral malaria is caused by Plasmodium falciparum. Atorvastatin (AVA) is a pentasubstituted pyrrole, which has been tested as an adjuvant in the treatment of cerebral malaria. Herein, a new class of hybrids of AVA and aminoquinolines (primaquine and chloroquine derivatives) has been synthesized. The quinolinic moiety was connected to the pentasubstituted pyrrole from AVA by a linker group (CH2)n=2-4 units. The activity of the compounds increased with the size of the carbons chain. Compound with n=4 and 7-chloroquinolinyl has displayed better activity (IC50=0.40 µM) than chloroquine. The primaquine derivative showed IC50=1.41 µM, being less toxic and more active than primaquine.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Atorvastatina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirróis/farmacologia , Quinolinas/farmacologia , Antimaláricos/síntese química , Atorvastatina/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirróis/química , Quinolinas/química , Relação Estrutura-Atividade
8.
Drug Deliv ; 23(7): 2290-2297, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25379806

RESUMO

Glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) is used as liver-targeted carrier for drug delivery. In this study, nanoparticles were prepared by ionic gelation process, and glycyrrhetinic acid act as the targeting ligand. The structure of the product was confirmed by IR and NMR techniques. The main aim of this study was to deliver atorvastatin directly to the liver by using same conjugate and reduce the associated side-effects, i.e. hepatotoxicity at high dose. Characterization of the developed formulation was performed by differential scanning calorimetry, particle size measurements and cellular uptake studies. Release profile, pharmacokinetics studies and organ distribution studies showed that developed formulation shows a relative higher liver uptake. The optimized formulation showed increased plasma concentration than the CTS nanoparticles as well as plain drug and the accumulation in the liver was nearly 2.59 times more than that of obtained with the CTS nanoparticles. Pharmaceutical and pharmacological indicators suggested that the proposed strategy can be successfully utilized for liver targeting of therapeutics.


Assuntos
Atorvastatina/química , Quitosana/química , Ácido Glicirretínico/química , Fígado/efeitos dos fármacos , Nanopartículas/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células Hep G2 , Humanos , Tamanho da Partícula
9.
Int J Pharm ; 485(1-2): 249-60, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25772421

RESUMO

The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells.


Assuntos
Atorvastatina/administração & dosagem , Dessecação , Portadores de Fármacos , Lecitinas/química , Pulmão/metabolismo , Tecnologia Farmacêutica/métodos , Vitamina E/análogos & derivados , Administração por Inalação , Aerossóis , Atorvastatina/química , Atorvastatina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Emulsões , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Pós , Solubilidade , Tensoativos/química , Vitamina E/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA