Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 38(7): e5870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664069

RESUMO

Spleen deficiency can lead to various abnormal physiological functions of the spleen. Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used to invigorate the spleen and tonify qi. The study aimed to identify the primary active components influencing the efficacy of AMR in strengthening the spleen and replenishing qi through spectrum-effect relationship and chemometrics. Network pharmacology was used to investigate the mechanism by which AMR strengthens the spleen and replenishes qi, with molecular docking utilized for validation purposes. The findings indicated that bran-fried AMR exhibited superior efficacy, with atractylenolides and atractylone identified as the primary active constituents. Atractylenolide II emerged as the most influential component impacting the effectiveness of AMR, while the key target was androgen receptor. Furthermore, crucial pathways implicated included the mitogen-activated protein cascade (MAPK) cascade, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, and RNA polymerase II sequence-specific DNA-binding transcription factor binding. In summary, our study has identified the primary active components associated with the efficacy of AMR and has provided an initial exploration of its mechanism of action. This offers a theoretical foundation for future investigations into the material basis and molecular mechanisms underlying the pharmacodynamics of AMR.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Lactonas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Sesquiterpenos , Baço , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Atractylodes/química , Lactonas/química , Lactonas/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Rizoma/química , Masculino
2.
J Nat Med ; 78(3): 702-708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662303

RESUMO

Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR). In addition, all of these isolated compounds were evaluated for their cytotoxic activities against human gastric cancer cell MGC-803 and human hepatocellular cancer cell HepG-2. Most of them exhibited moderate to weak inhibitory effects with IC50 values in the range of 25.15-88.85 µM except for 9-12.


Assuntos
Atractylodes , Rizoma , Sesterterpenos , Atractylodes/química , Humanos , Estrutura Molecular , Linhagem Celular Tumoral , Sesterterpenos/química , Sesterterpenos/farmacologia , Sesterterpenos/isolamento & purificação , Rizoma/química , Células Hep G2 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/farmacologia
3.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612999

RESUMO

Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.


Assuntos
Atractylodes , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio , Caspases , Extratos Vegetais/farmacologia
4.
Vet Med Sci ; 10(3): e1412, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38504633

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Assuntos
Atractylodes , Lipopolissacarídeos , Animais , Lipopolissacarídeos/toxicidade , Galinhas , Polissacarídeos/farmacologia , Apoptose , Proliferação de Células , Inflamação/veterinária
5.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543015

RESUMO

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Assuntos
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Atractylodes/química , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Etnofarmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Fitoterapia
6.
J Agric Food Chem ; 72(14): 7707-7715, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530236

RESUMO

In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and ß-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and ß-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and ß-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Sesquiterpenos de Eudesmano , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria , Análise dos Mínimos Quadrados
7.
J Ethnopharmacol ; 326: 117971, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403003

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY: This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS: To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin ß (ß-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS: The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (ß-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.


Assuntos
Atractylodes , Rizoma , Humanos , Feminino , Gravidez , Camundongos , Animais , Grelina/uso terapêutico , Resultado da Gravidez , LDL-Colesterol , Peso Fetal , Diarreia/tratamento farmacológico , Gastrinas , Água , RNA Mensageiro
8.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396809

RESUMO

H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.


Assuntos
Atractylodes , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Óxido de Zinco , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Vacinas de Produtos Inativados , Polissacarídeos/farmacologia , Anticorpos Antivirais
9.
BMC Plant Biol ; 24(1): 91, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317086

RESUMO

BACKGROUND: Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS: The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION: Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.


Assuntos
Atractylodes , Sesquiterpenos , Triterpenos , Transcriptoma , Atractylodes/genética , Secas , Perfilação da Expressão Gênica , Terpenos , Água , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
10.
Integr Cancer Ther ; 23: 15347354231223967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38291969

RESUMO

BACKGROUND: A statistical model is essential in determining the appropriate predictive indicators for therapies in many types of cancers. Predictors have been compared favorably to the traditional systems for many cancers. Thus, this study has been proposed as a new standard approach. A recent study on the clinical efficacy of Atractylodes lancea (Thunb) DC. (AL) revealed the higher clinical benefits in patients with advanced-stage intrahepatic cholangiocarcinoma (ICC) treated with AL compared with standard supportive care. We investigated the relationships between clinical efficacy and pharmacokinetic parameters of serum bioactivity of AL and its active constituent atractylodin and determined therapeutic ranges. METHODS: Group 1 of advanced-stage ICC patients received daily doses of 1000 mg of standardized extract of the capsule formulation of AL (CMC-AL) for 90 days. Group 2 received daily doses of 1000 mg of CMC-AL for 14 days, followed by 1500 mg for 14 days, and 2000 mg for 62 days. Group 3 (control group) received palliative care. Cox proportional hazard model and Receiver Operating Characteristic (ROC) were applied to determine the cut-off values of AUC0-inf, Cmax, and Cavg associated with therapeutic outcomes. Number needed to treat (NNT) and relative risk (RR) were also applied to determine potential predictors. RESULTS: The AUC0-inf of total AL bioactivity of >96.71 µg hour/ml was identified as a promising predictor of disease prognosis, that is, progression-free survival (PFS) and disease control rate (DCR). Cmax of total AL bioactivity of >21.42 was identified as a predictor of the prognosis of survival. The therapeutic range of total AL bioactivity for PFS and DCR is 14.48 to 65.8 µg/ml, and for overall survival is 10.97 to 65.8 µg/ml. Conclusions: The predictors of ICC disease prognosis were established based on the pharmacokinetics of total AL bioactivity. The information could be exploited to improve the clinical efficacy of AL in patients with advanced-stage ICC. These predictors will be validated in a phase 2B clinical study. TRIAL REGISTRATION: TCTR20210129007 (TCTR: www.clinicaltrials.in.th).


Assuntos
Atractylodes , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Extratos Vegetais/uso terapêutico
11.
J Ethnopharmacol ; 322: 117637, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135226

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Constipation is one of the most prevalent gastrointestinal tract diseases that seriously affects health-related quality of human life and requires effective treatments without side effect. The rhizome of Atractylodes macrocephala Koidz. (Compositae), called Atractylodes Macrocephala Rhizome (AMR), a commonly used traditional Chinese medicine, has been used to relieve the clinical symptoms of patients with constipation. AIM OF THE STUDY: To reveal the dose-dependent laxative effect and potential mechanism of AMR on loperamide-induced slow transit constipation (STC) rats. MATERIALS AND METHODS: Loperamide-induced constipation rat model was established and the dose-dependent laxative effect of AMR was investigated. Untargeted metabolomics based on an UPLC-Q/TOF-MS technique combined with western blot analysis was used to explain the potential mechanism of AMR relieve loperamide-induced constipation in rats. RESULTS: The results showed that medium dose of AMR (AMR-M, 4.32 g raw herb/kg) and high dose of AMR (AMR-H, 8.64 g raw herb/kg) treatments significantly increased the fecal water content, Bristol score, gastrointestinal transit rate, and recovered the damaged colon tissues of constipated rats, but low dose of AMR (AMR-L, 2.16 g raw herb/kg) did not show laxative effect. Both AMR-M and AMR-H treatments also remarkably reduced the serum levels of vasoactive intestinal peptide (VIP), somatostatin (SS) and dopamine (DA), and increased the levels of motilin (MTL), gastrin (GAS) and 5-hydroxytryptamine (5-HT). Urine metabolomics revealed that constipation development was mainly ascribed to the perturbed tryptophan metabolism, and AMR-M and AMR-H markedly corrected the abnormal levels of five urine tryptophan metabolites, namely 4,6-dihydroxyquinoline, indole, 4,8-dihydroxyquinoline, 5-hydroxytryptamine, and kynurenic acid. Additionally, western blot analysis confirmed that the abnormal expression of rate-limiting enzyme involving in tryptophan metabolism, including tryptophan hydroxylase (TPH), monoamine oxidase (MAO) and indoleamine-2,3-dioxygenase (IDO) in the colon of constipated rats, were mediated by AMR-M and AMR-H. CONCLUSIONS: The findings provide insight into the mechanisms of STC and AMR could be developed as new therapeutic agent for prevention or healing of constipation.


Assuntos
Atractylodes , Loperamida , Ratos , Humanos , Animais , Loperamida/uso terapêutico , Laxantes/farmacologia , Atractylodes/química , Triptofano , Rizoma/química , Serotonina , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
12.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Assuntos
Atractylodes , Staphylococcus aureus Resistente à Meticilina , Pioderma , Cães , Animais , Camundongos , Amicacina , Interleucina-6 , Pioderma/tratamento farmacológico , Pioderma/veterinária , Antibacterianos/farmacologia
13.
Food Res Int ; 175: 113681, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129026

RESUMO

The accurate and rapid authentication techniques and strategies for highly-similar foods are still lacking. Herein, a novel sequential online extraction electrospray ionization mass spectrometry (S-oEESI-MS) was developed to achieve spatio-temporally resolved ionization and comprehensive characterization of complex foods with multi-components (high, medium, and low polarity substances). Meanwhile, a characteristic marker screening method and an integrated research strategy based on MS fingerprinting, characteristic marker and chemometrics modeling were established, which are especially suitable for the accurate and rapid authentication of highly-similar foods that are difficult to be authenticated by traditional techniques (e.g., LC-MS). Thirty-two batches of highly-similar Atractylodis macrocephalae rhizome from four different origins were used as model samples. As a result, S-oEESI-MS enabled a more comprehensive MS characterization of substance profiles in complex plant samples in 1.0 min. Further, 22 characteristic markers of Atractylodis macrocephalae were ingeniously screened out and combined with multivariate statistical analysis model, the accurate authentication of highly-similar Atractylodis macrocephalae was realized. This study presents a comprehensive strategy for accurate authentication and origin analysis of highly-similar foods, which has potentially significant applications for ensuring food quality and safety.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Espectrometria de Massas por Ionização por Electrospray , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Análise Multivariada , Espectrometria de Massa com Cromatografia Líquida
14.
Int J Biol Macromol ; 253(Pt 4): 127044, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742891

RESUMO

Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and ß-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and ß-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and ß-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.


Assuntos
Atractylodes , Sesquiterpenos , Atractylodes/genética , Atractylodes/metabolismo , Polímero Poliacetilênico/metabolismo , Transcriptoma , Sesquiterpenos/metabolismo , Metaboloma
15.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630228

RESUMO

The rhizome of Atractylodes lancea (Thunb.) DC. (AL), called Maocangzhu in Chinese, is a geoherbalism medical herb in Jiangsu Province that is often used in the prescription of traditional Chinese medicine (TCM), such as for the treatment of COVID-19. The landform and climatic environment of each province varies greatly from south to north, which has an important influence on the chemical constituents in AL. However, there is a lack of research on the significance of its geoherbalism, especially in water-soluble parts other than volatile oil. In this study, eight known compounds were isolated and obtained as reference substances from AL. In addition, liquid chromatography coupled with triple-quadrupole time-of-flight tandem mass spectrometry (LC-triple TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and characterize chemical constituents from different habitats. Moreover, orthogonal partial least-squares discriminant analysis (OPLS-DA) was applied to reveal the differential metabolomics in AL from different habitats based on the qualitative information of the chemical constituents. Results showed that a total of 33 constituents from GC-MS and 106 constituents from LC-triple TOF-MS/MS were identified or inferred, including terpenoids, polyacetylenes, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced from the fragmentation behavior of the major constituents. According to the variable importance in projection (VIP) and p-values, only one volatile differential metabolite was identified by GC-MS screening: ß-eudesmol. Overall, five differential metabolites were identified by LC-triple TOF-MS/MS screening: sucrose, 4(15),11-eudesmadiene; atractylenolide I, 3,5,11-tridecatriene-7,9-diyne-1,2-diacetate, and (3Z,5E,11E)-tridecatriene-7,9-diynyl-1-O-(E)-ferulate. This study provides metabolomic information for the establishment of a comprehensive quality evaluation system for AL.


Assuntos
Atractylodes , COVID-19 , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Metabolômica , Cromatografia Líquida
16.
Chem Biodivers ; 20(8): e202300793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37485567

RESUMO

The utilization of rhizomes from the genus Atractylodes has been challenging due to their closely related origins. In this study, we developed an analytical strategy to differentiate Atractylodes lancea (A. lancea), Atractylodes chinensis (A. chinensis), Atractylodes japonica (A. japonica), and Atractylodes macrocephala (A. macrocephala), and compared their volatile compositions. Gas chromatography-mass spectrometry (GC/MS) was used to analyze the volatile profiles of essential oils extracted from 59 batches of samples. Chemometric methods enabled a better understanding of the differences in volatile oils between the four species and identified significant components affecting their classification and quality. A total of 50 volatile components were identified from the essential oils by GC/MS. Unsupervised and supervised chemometric analyses accurately distinguished A. lancea, A. chinensis, A. japonica, and A. macrocephala. Furthermore, five characteristic chemical markers, namely hinesol, ß-eudesmol, atractylon, atractylodin and atractylenolide I, were obtained, and their respective percentage contents in individual species and samples were determined. This study provides a valuable reference for the quality evaluation of medicinal plants with essential oils and holds significance for species differentiation and the rational clinical application of Atractylodes herbs.


Assuntos
Atractylodes , Óleos Voláteis , Plantas Medicinais , Cromatografia Gasosa-Espectrometria de Massas , Plantas Medicinais/química , Atractylodes/química , Quimiometria , Óleos Voláteis/química
17.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2086-2091, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282897

RESUMO

We explored the correlations between the color difference values [ΔL~*(lightness), Δa~*(red-green), Δb~*(yellow-blue)] and the content of four active components(including sesquiterpenoids and polyacetylenes) in the powder of Atractylodes lancea and A. chinensis, aiming to provide reference for the quality evaluation of Atractylodis Rhizoma and establish a qualitative model that can distinguish between A. lancea and A. chinensis based on the chromatic values. The tristimulus values(L~*, a~*, and b~*) of 23 batches of A. lancea and A. chinensis were measured by a color difference meter. The content of atractylenolide Ⅱ, ß-eudesmol, atractylodin, and atractylone in the 23 batches of samples were measured by high performance liquid chromatography(HPLC). Principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were performed to establish the qualitative models for distinguishing between A. lancea and A. chinensis. SPSS was employed to analyze the correlations between the tristimulus values and the content of the four index components. The results showed that the established PCA and PLS-DA models can divide the A. lancea and A. chinensis samples into two regions, and the tristimulus values of A. lancea and A. chinensis were positively correlated with the content of ß-eudesmol and atractylodin. Therefore, the PCA and PLS-DA models can successfully identify A. lancea and A. chinensis, and the appearance color can be used to quickly predict the internal quality of Atractylodis Rhizoma. This study provides a reference for the quality evaluation of Atractylodis Rhizoma and the modern research on the color of Chinese medicinal materials.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Sesquiterpenos de Eudesmano , Rizoma
18.
BMC Complement Med Ther ; 23(1): 186, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287012

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA), the adenocarcinoma of the biliary duct, is commonly reported in Asia, with the highest incidence in northeastern Thailand. Chemotherapy of CCA has been limited by the lack of effective chemotherapeutic drugs. A series of previous in vitro and in vivo studies support further research and development of Atractylodes lancea (Thunb.) DC. (AL) as a potential candidate for treating CCA as a crude ethanolic extract. In the present study, we evaluated the toxicity and anti-CCA activity of the CMC (Chemistry, Manufacturing, and Control) capsule formulation of the ethanolic rhizome extract of AL (CMC-AL) in animals. METHODS: Major steps included acute, subchronic and chronic toxicity testing in Wistar rats and anti-CCA activity in a CCA-xenografted nude mouse model. The safety of CMC-AL was determined based on the maximum tolerated dose (MTD) and no-observed-adverse-effect level (NOAEL) according to the OECD guideline. The anti-CCA activity of CMC-AL in nude mice was evaluated after transplantation of CL-6 cells to evaluate inhibitory effects on tumor size progression and metastasis and survival time prolongation. Safety assessments included hematology, biochemistry parameters and histopathological examination. Lung metastasis was investigated using VEGF ELISA kit. RESULTS: All evaluations confirmed satisfactory pharmaceutical properties of oral formulation and safety profile of the CMC-AL with no overt toxicity up to the MTD and NOAEL of 5,000 and 3,000 mg/kg body weight, respectively. CMC-AL exhibited potent anti-CCA efficacy with regard to inhibitory activity on tumor progression and lung metastasis. CONCLUSIONS: CMC-AL is safe and should be further investigated in a clinical trial as a potential therapy for CCA patients.


Assuntos
Atractylodes , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ratos , Camundongos , Animais , Atractylodes/química , Camundongos Nus , Ratos Wistar , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/patologia , Extratos Vegetais/uso terapêutico , Pesquisa
19.
J Ethnopharmacol ; 315: 116718, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37268258

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW: This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS: Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS: By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/ß-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS: AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.


Assuntos
Atractylodes , Óleos Voláteis , China , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia
20.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241729

RESUMO

Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.


Assuntos
Atractylodes , Fosfatidilinositol 3-Quinases , Medicina Tradicional Chinesa , Transdução de Sinais , Atractylodes/química , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA