Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1188, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216643

RESUMO

Ku70 is a multifunctional protein with pivotal roles in DNA repair via non-homologous end-joining, V(D)J recombination, telomere maintenance, and neuronal apoptosis control. Nonetheless, its regulatory mechanisms remain elusive. Chicken Ku70 (GdKu70) cDNA has been previously cloned, and DT40 cells expressing it have significantly contributed to critical biological discoveries. GdKu70 features an additional 18 amino acids at its N-terminus compared to mammalian Ku70, the biological significance of which remains uncertain. Here, we show that the 5' flanking sequence of GdKu70 cDNA is not nearly encoded in the chicken genome. Notably, these 18 amino acids result from fusion events involving the NFE2L1 gene on chromosome 27 and the Ku70 gene on chromosome 1. Through experiments using newly cloned chicken Ku70 cDNA and specific antibodies, we demonstrated that Ku70 localizes within the cell nucleus as a heterodimer with Ku80 and promptly accumulates at DNA damage sites following injury. This suggests that the functions and spatiotemporal regulatory mechanisms of Ku70 in chickens closely resemble those in mammals. The insights and resources acquired will contribute to elucidate the various mechanisms by which Ku functions. Meanwhile, caution is advised when interpreting the previous numerous key studies that relied on GdKu70 cDNA and its expressing cells.


Assuntos
Antígenos Nucleares , Galinhas , Dano ao DNA , Autoantígeno Ku , Animais , Aminoácidos/genética , Antígenos Nucleares/metabolismo , Galinhas/genética , Galinhas/metabolismo , Clonagem Molecular , Dano ao DNA/genética , Reparo do DNA , DNA Complementar , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
2.
Phytomedicine ; 116: 154876, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37210962

RESUMO

BACKGROUND: Targeting DNA damage response and DNA repair proficiency of cancers is an important anticancer strategy. Kaempferol (Kae), a natural flavonoid, displays potent antitumor properties in some cancers. However, the precise underlying mechanism of Kae regulates DNA repair system are poorly understood. PURPOSE: We aim to evaluate the efficacy of Kae in the treatment of human glioma as well as the molecular mechanism regarding DNA repair. STUDY DESIGN: Effects of Kae on glioma cells were detected using CCK-8 and EdU labeling assays. The molecular mechanism of Kae on glioma was determined using RNAseq. The inhibition effects of Kae on DNA repair were verified using Immunoprecipitation, immunofluorescence, and pimEJ5-GFP report assays. For in vivo study, orthotopic xenograft models were established and treated with Kae or vehicle. Glioma development was monitored by bioluminescence imaging, Magnetic Resonance Imaging (MRI), and brain sections Hematoxylin/Eosin (HE) staining. Immunohistochemical (IHC) analysis was used to detect expression of Ku80, Ki67 and γH2AX in engrafted glioma tissue. RESULTS: We found that Kae remarkably inhibits viability of glioma cells and decreases its proliferation. Mechanistically, Kae regulates multiple functional pathways associated with cancer, including non-homologous end joining (NHEJ) repair. Further studies revealed that Kae inhibits release of Ku80 from the double-strand breaks (DSBs) sites via reducing ubiquitylation and degradation of Ku80. Therefore, Kae significantly suppresses NHEJ repair and induces accumulation of DSBs in glioma cells. Moreover, Kae displays a dramatic inhibition effects on glioma growth in an orthotopic transplantation model. These data demonstrate that Kae can induce deubiquitination of Ku80, suppress NHEJ repair and inhibit glioma growth. CONCLUSION: Our findings indicate that inhibiting release of Ku80 from the DSBs by Kae may be a potential effective approach for glioma treatment.


Assuntos
Quebras de DNA de Cadeia Dupla , Glioma , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Quempferóis/farmacologia , Reparo do DNA por Junção de Extremidades , Glioma/tratamento farmacológico
3.
J Trace Elem Med Biol ; 55: 89-95, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31345372

RESUMO

Gastric cancer is one of the most prevalent cancers in northern Iran. The DNA repair genes X-ray repair cross-complementing (XRCC) group 5, XRCC6, which are important members of non-homologous end-joining repair system, play an important role in repairing the DNA double-strand breaks. Chronic exposure to heavy metals has long been recognized as being capable of augmenting gastric cancer incidence among exposed human populations. Since trace elements could directly or indirectly damage DNA, and polymorphism in DNA DSBs-repair genes can alter the capacity of system repair, we assumed that XRCC5 VNTR and XRCC6-61C >G polymorphism also impress the DSBs-repair system ability and contribute to gastric cancer. Therefore, the objective of this research was to evaluate the tissue accumulation of Selenium (Se), Cadmium (Cd) and Arsenic (As), and XRCC5 VNTR, XRCC6-61C >G polymorphisms in cancerous and non-cancerous tissues in Golestan province. The study population included 46 gastric cancer patients and 43 cancer-free controls. Two polymorphisms of XRCC5, XRCC6 were genotyped using polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Further employed was atomic absorption spectroscopy so as to determine the levels of Se, Cd and As. Finally, the data were analyzed by SPSS (version 16) statistical software. The Se level was significantly higher in tumors as compared to non-tumor tissues, but there was no significant correlation between As and Cd in cancerous and noncancerous tissues. Allele frequencies of the selected genes were not statistically different between groups regarding XRCC6 (-61C>G). XRCC5 0R/0R, 0R/1R, 1R/1R, and 0R/2R genotypes were more common in cancerous group. High levels of Se in cancerous tissues vs. non-cancerous tissues may be one of the carcinogenic factors; in Golestan province, unlike other regions of Iran and the world, the level of Se is high, hence the higher risks of gastric cancer.


Assuntos
Arsênio/análise , Cádmio/análise , Reparo do DNA/genética , Autoantígeno Ku/genética , Polimorfismo de Nucleotídeo Único/genética , Selênio/análise , Neoplasias Gástricas/genética , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade
4.
Anticancer Res ; 38(1): 131-136, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277765

RESUMO

BACKGROUND/AIM: The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. MATERIALS AND METHODS: Human colon cancer HT-29 cells were treated with curcumin (2.5 µM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. RESULTS: Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (p<0.01). DNA repair-related genes CCNH and XRCC5 were upregulated and LIG4 and PNKP downregulated by the combination of curcumin and irradiation compared with irradiation alone (p<0.05). Combined treatment of curcumin and irradiation resulted in a significantly greater tumor-growth inhibition and apoptosis compared to irradiation treatment alone (p<0.01). CONCLUSION: Curcumin sensitizes human colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Curcumina/farmacologia , Curcumina/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ciclina H/genética , Ciclina H/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HT29 , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Medicina Tradicional Chinesa , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA