Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 951
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241439

RESUMO

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Neurônios/fisiologia , Tálamo/fisiologia , Axônios/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38167425

RESUMO

Conscious perception in mammals depends on precise circuit connectivity between cerebral cortex and thalamus; the evolution and development of these structures are closely linked. During the wiring of reciprocal thalamus-cortex connections, thalamocortical axons (TCAs) first navigate forebrain regions that had undergone substantial evolutionary modifications. In particular, the organization of the pallial-subpallial boundary (PSPB) diverged significantly between mammals, reptiles, and birds. In mammals, transient cell populations in internal capsule and early corticofugal projections from subplate neurons closely interact with TCAs to guide pathfinding through ventral forebrain and PSPB crossing. Prior to thalamocortical axon arrival, cortical areas are initially patterned by intrinsic genetic factors. Thalamocortical axons then innervate cortex in a topographically organized manner to enable sensory input to refine cortical arealization. Here, we review the mechanisms underlying the guidance of thalamocortical axons across forebrain boundaries, the implications of PSPB evolution for thalamocortical axon pathfinding, and the reciprocal influence between thalamus and cortex during development.


Assuntos
Neurônios , Tálamo , Animais , Axônios/fisiologia , Córtex Cerebral , Mamíferos , Vias Neurais/fisiologia
3.
Cell Rep ; 43(1): 113590, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38127620

RESUMO

The morphology and spatial distribution of axon arbors and boutons are crucial for neuron presynaptic functions. However, the principles governing their whole-brain organization at the single-neuron level remain unclear. We developed a machine-learning method to separate axon arbors from passing axons in single-neuron reconstruction from fluorescence micro-optical sectioning tomography imaging data and obtained 62,374 axon arbors that displayed distinct morphology, spatial patterns, and scaling laws dependent on neuron types and targeted brain areas. Focusing on the axon arbors in the thalamus and cortex, we revealed the segregated spatial distributions and distinct morphology but shared topographic gradients between feedforward and feedback projections. Furthermore, we uncovered an association between arbor complexity and microglia density. Finally, we found that the boutons on terminal arbors show branch-specific clustering with a log-normal distribution that again differed between feedforward and feedback terminal arbors. Together, our study revealed distinct presynaptic structural organizations underlying diverse functional innervation of single projection neurons.


Assuntos
Axônios , Terminações Pré-Sinápticas , Retroalimentação , Axônios/fisiologia , Tálamo , Córtex Cerebral
4.
Artigo em Inglês | MEDLINE | ID: mdl-38083017

RESUMO

Computational models of neurons are valuable tools that allow researchers to form and evaluate hypotheses and minimize high-cost animal work. We soon plan to use computational modeling to explore the response of different sensory fiber types to long duration external stimulation to try to selectively block nociceptive C-fibers. In this work, we modified an existing C-fiber-specific axon model to additionally include concentration-dependent conductance changes, the contribution of longitudinal current flow to changes in local concentrations, and longitudinal currents generated by concentration gradients along the axon. Then, we examined the impact of these additional elements on the modeled action potential properties, activity-dependent latency increases, and concentration changes due to external stimulation. We found that these additional model elements did not significantly affect the action potential properties or activity-dependent behavior, but they did have a significant impact on the modeled response to external long duration stimulation.Clinical Relevance- This presents a computational model that can be used to help investigate and develop electrical stimulation therapies for pathological pain.


Assuntos
Axônios , Terapia por Estimulação Elétrica , Animais , Axônios/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador
5.
Proc Natl Acad Sci U S A ; 120(33): e2301644120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549297

RESUMO

Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.


Assuntos
Neocórtex , Nascimento Prematuro , Recém-Nascido , Camundongos , Animais , Humanos , Gravidez , Feminino , Neurônios/fisiologia , Serotonina , Córtex Cerebral/fisiologia , Recém-Nascido Prematuro , Axônios/fisiologia , Tálamo/fisiologia
6.
Cereb Cortex ; 33(16): 9566-9582, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386697

RESUMO

The auditory cortex exerts a powerful, yet heterogeneous, effect on subcortical targets. Auditory corticofugal projections emanate from layers 5 and 6 and have complementary physiological properties. While several studies suggested that layer 5 corticofugal projections branch widely, others suggested that multiple independent projections exist. Less is known about layer 6; no studies have examined whether the various layer 6 corticofugal projections are independent. Therefore, we examined branching patterns of layers 5 and 6 auditory corticofugal neurons, using the corticocollicular system as an index, using traditional and novel approaches. We confirmed that dual retrograde injections into the mouse inferior colliculus and auditory thalamus co-labeled subpopulations of layers 5 and 6 auditory cortex neurons. We then used an intersectional approach to relabel layer 5 or 6 corticocollicular somata and found that both layers sent extensive branches to multiple subcortical structures. Using a novel approach to separately label layers 5 and 6 axons in individual mice, we found that layers 5 and 6 terminal distributions partially spatially overlapped and that giant terminals were only found in layer 5-derived axons. Overall, the high degree of branching and complementarity in layers 5 and 6 axonal distributions suggest that corticofugal projections should be considered as 2 widespread systems, rather than collections of individual projections.


Assuntos
Córtex Auditivo , Colículos Inferiores , Camundongos , Animais , Axônios/fisiologia , Colículos Inferiores/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Vias Auditivas/fisiologia
7.
J Neural Eng ; 20(2)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36881885

RESUMO

Objective.Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously.Approach.We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation.Main results.EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population.Significance.We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces.


Assuntos
Axônios , Estimulação Elétrica Nervosa Transcutânea , Animais , Axônios/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervos Periféricos , Estimulação Elétrica/métodos , Mamíferos
8.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584680

RESUMO

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Assuntos
Corpos Geniculados , Receptor 5-HT1B de Serotonina , Serotonina , Tálamo , Animais , Camundongos , Axônios/fisiologia , Cálcio , Corpos Geniculados/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Células Ganglionares da Retina/fisiologia , Serotonina/metabolismo , Tálamo/fisiologia
9.
Cereb Cortex ; 33(5): 1693-1707, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35512682

RESUMO

Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.


Assuntos
Neurônios , Tálamo , Retroalimentação , Tálamo/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Transdução de Sinais , Córtex Somatossensorial/fisiologia
10.
Hand (N Y) ; 18(1_suppl): 119S-125S, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579211

RESUMO

BACKGROUND: Although electrical stimulation (ES) can improve nerve regeneration, the impact of nerve block, such as lidocaine (Lido), on the therapeutic benefits of ES remains unclear. We used a rat tibial nerve transection-and-repair model to explore how either preoperative (PreOp) or postoperative (PostOp) nerve block affects ES-related improvement in regeneration. METHODS: Lewis rats were used in 1 of 2 studies. The first evaluated the effects of extraneural Lido on both healthy and injured nerves. In the second study, rats were randomized to 5 experimental groups: No ES (negative control), PreOp Lido, ES + PreOp Lido, PostOp + ES, and ES (positive control). All groups underwent tibial nerve transection and repair. In both studies, nerves were harvested for histological analysis of regeneration distal to the injury site. RESULTS: Application of extraneural Lido did not damage healthy or injured nerve based on qualitative histological observations. In the context of nerve transection and repair, the ES group exhibited improved axon regeneration at 21 days measured by the total number of myelinated fibers compared with No ES. Fiber density and percentage of neural tissue in the ES group were greater than those in both No ES and PreOp Lido + ES groups. ES + PostOp Lido was not different from No ES or ES group. CONCLUSIONS: Extraneural application of Lido did not damage nerves. Electrical stimulation augmented nerve regeneration, but Lido diminished the ES-related improvement in nerve regeneration. Clinical studies on the effects of ES to nerve regeneration may need to consider nerve block as a variable affecting ES outcome.


Assuntos
Terapia por Estimulação Elétrica , Lidocaína , Animais , Ratos , Axônios/fisiologia , Lidocaína/farmacologia , Regeneração Nervosa/fisiologia
11.
PLoS One ; 17(11): e0276694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36356043

RESUMO

The hypothalamus is comprised of heterogenous cell populations and includes highly complex neural circuits that regulate the autonomic nerve system. Its dysfunction therefore results in severe endocrine disorders. Although recent experiments have been conducted for in vitro organogenesis of hypothalamic neurons from embryonic stem (ES) or induced pluripotent stem (iPS) cells, whether these stem cell-derived hypothalamic neurons can be useful for regenerative medicine remains unclear. We therefore performed orthotopic transplantation of mouse ES cell (mESC)-derived hypothalamic neurons into adult mouse brains. We generated electrophysiologically functional hypothalamic neurons from mESCs and transplanted them into the supraoptic nucleus of mice. Grafts extended their axons along hypothalamic nerve bundles in host brain, and some of them even projected into the posterior pituitary (PPit), which consists of distal axons of the magnocellular neurons located in hypothalamic supraoptic and paraventricular nuclei. The axonal projections to the PPit were not observed when the mESC-derived hypothalamic neurons were ectopically transplanted into the substantia nigra reticular part. These findings suggest that our stem cell-based orthotopic transplantation approach might contribute to the establishment of regenerative medicine for hypothalamic and pituitary disorders.


Assuntos
Hipotálamo , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Hipotálamo/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Núcleo Supraóptico , Núcleo Hipotalâmico Paraventricular
12.
Proc Natl Acad Sci U S A ; 119(22): e2201355119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613048

RESUMO

Area-specific axonal projections from the mammalian thalamus shape unique cellular organization in target areas in the adult neocortex. How these axons control neurogenesis and early neuronal fate specification is poorly understood. By using mutant mice lacking the majority of thalamocortical axons, we show that these axons are required for the production and specification of the proper number of layer 4 neurons in primary sensory areas by the neonatal stage. Part of these area-specific roles is played by the thalamus-derived molecule, VGF. Our work reveals that extrinsic cues from sensory thalamic projections have an early role in the formation of cortical cytoarchitecture by enhancing the production and specification of layer 4 neurons.


Assuntos
Axônios , Padronização Corporal , Córtex Cerebral , Neurogênese , Tálamo , Animais , Axônios/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/ultraestrutura , Camundongos , Camundongos Mutantes , Vias Neurais , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/fisiologia , Tálamo/embriologia , Tálamo/ultraestrutura
13.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289744

RESUMO

Neuronal abundance and thickness of each cortical layer are specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here, we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.


Assuntos
Neocórtex , Animais , Axônios/fisiologia , Camundongos , Neocórtex/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia
14.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258622

RESUMO

Although neural tissues in cnidarian hydroids have a nerve net structure, some cnidarian medusae contain well-defined nerve tracts. As an example, the hydrozoan medusa Aglantha digitale has neural feeding circuits that show an alignment and condensation, which is absent in its relatives Aequorea victoria and Clytia hemisphaerica. In some cases, neural condensations take the form of fast propagating giant axons concerned with escape or evasion. Such giant axons appear to have developed from the fusion of many, much finer units. Ribosomal DNA analysis has identified the lineage leading to giant axon-based escape swimming in Aglantha and other members of the Aglaura clade of trachymedusan jellyfish. The Aglaura, along with sister subclades that include species such as Colobonema sericeum, have the distinctive ability to perform dual swimming, i.e. to swim at either high or low speeds. However, the form of dual swimming exhibited by Colobonema differs both biomechanically and physiologically from that in Aglantha and is not giant axon based. Comparisons between the genomes of such closely related species might provide a means to determine the molecular basis of giant axon formation and other neural condensations. The molecular mechanism responsible may involve 'fusogens', small molecules possibly derived from viruses, which draw membranes together prior to fusion. Identifying these fusogen-based mechanisms using genome analysis may be hindered by the many changes in anatomy and physiology that followed giant axon evolution, but the genomic signal-to-noise ratio may be improved by examining the convergent evolution of giant axons in other hydrozoa, such as the subclass Siphonophora.


Assuntos
Hidrozoários , Cifozoários , Animais , Axônios/fisiologia , Hidrozoários/genética , Filogenia , Cifozoários/fisiologia , Natação
15.
J Neurosci ; 42(16): 3344-3364, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273083

RESUMO

The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of Sox8-EGFP (striatal direct pathway) and Fezf2-TdTomato (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using Isl1 conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain- or telencephalon-specific Isl1 inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in Isl1 cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle.SIGNIFICANCE STATEMENT The basal ganglia are a group of subcortical nuclei with established roles in the coordination of voluntary motor programs, aspects of cognition, and the selection of appropriate social behaviors. Hence, disruptions in basal ganglia connectivity have been implicated in the motor, cognitive, and social dysfunction characterizing common neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, and tic disorder. Here, we identified a novel role for the striatonigral (direct) pathway in pioneering the internal capsule and cerebral peduncle, and in guiding axons extending to and from the cortex. Our findings suggest that the abnormal development of basal ganglia circuits can drive secondary internal capsule defects and thereby may contribute to the pathology of these disorders.


Assuntos
Transtorno do Espectro Autista , Pedúnculo Cerebral , Animais , Transtorno do Espectro Autista/metabolismo , Axônios/fisiologia , Córtex Cerebral/metabolismo , Cápsula Interna , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/fisiologia , Tálamo
16.
Plast Reconstr Surg ; 149(4): 681e-690e, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35139047

RESUMO

BACKGROUND: Repair of nerve injuries can fail to achieve adequate functional recovery. Electrical stimulation applied at the time of nerve repair can accelerate axon regeneration, which may improve the likelihood of recovery. However, widespread use of electrical stimulation may be limited by treatment protocols that increase operative time and complexity. This study evaluated whether a short-duration electrical stimulation protocol (10 minutes) was efficacious to enhance regeneration following nerve repair using rat models. METHODS: Lewis and Thy1-green fluorescent protein rats were randomized to three groups: 0 minutes of electrical stimulation (no electrical stimulation; control), 10 minutes of electrical stimulation, and 60 minutes of electrical stimulation. All groups underwent tibial nerve transection and repair. In the intervention groups, electrical stimulation was delivered after nerve repair. Outcomes were assessed using immunohistochemistry, histology, and serial walking track analysis. RESULTS: Two weeks after nerve repair, Thy1-green fluorescent protein rats demonstrated increased green fluorescent protein-positive axon outgrowth from the repair site with electrical stimulation compared to no electrical stimulation. Serial measurement of walking tracks after nerve repair revealed recovery was achieved more rapidly in both electrical stimulation groups as compared to no electrical stimulation. Histologic analysis of nerve distal to the repair at 8 weeks revealed robust axon regeneration in all groups. CONCLUSIONS: As little as 10 minutes of intraoperative electrical stimulation therapy increased early axon regeneration and facilitated functional recovery following nerve transection with repair. Also, as early axon outgrowth increased following electrical stimulation with nerve repair, these findings suggest electrical stimulation facilitated recovery because of earlier axon growth across the suture-repaired site into the distal nerve to reach end-organ targets. CLINICAL RELEVANCE STATEMENT: Brief (10-minute) electrical stimulation therapy can provide similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair rat model and merit further studies, as they represent a translational advantage.


Assuntos
Axônios , Terapia por Estimulação Elétrica , Animais , Humanos , Ratos , Axônios/fisiologia , Estimulação Elétrica/métodos , Regeneração Nervosa/fisiologia , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Nervo Tibial/lesões
17.
Sci Rep ; 12(1): 1388, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082405

RESUMO

This study aimed to investigate the effect of charge-balanced transcutaneous electrical nerve stimulation (cb-TENS) in accelerating recovery of the facial function and nerve regeneration after facial nerve (FN) section in a rat model. The main trunk of the left FN was divided and immediately sutured just distal to the stylomastoid foramen in 66 Sprague-Dawley rats. The control group had no electrical stimulus. The other two groups received cb-TENS at 20 Hz (20 Hz group) or 40 Hz (40 Hz group). Cb-TENS was administered daily for seven days and then twice a week for three weeks thereafter. To assess the recovery of facial function, whisker movement was monitored for four weeks. Histopathological evaluation of nerve regeneration was performed using transmission electron microscopy (TEM) and confocal microscopy with immunofluorescence (IF) staining. In addition, the levels of various molecular biological markers that affect nerve regeneration were analyzed. Whisker movement in the cb-TENS groups showed faster and better recovery than the control group. The 40 Hz group showed significantly better movement at the first week after injury (p < 0.0125). In histopathological analyses using TEM, nerve axons and Schwann cells, which were destroyed immediately after the injury, recovered in all groups over time. However, the regeneration of the myelin sheath was remarkably rapid and thicker in the 20 Hz and 40 Hz groups than in the control group. Image analysis using IF staining showed that the expression levels of S100B and NF200 increased over time in all groups. Specifically, the expression of NF200 in the 20 Hz and 40 Hz groups increased markedly compared to the control group. The real-time polymerase chain reaction was performed on ten representative neurotrophic factors, and the levels of IL-1ß and IL-6 were significantly higher in the 20 and 40 Hz groups than in the control group (p < 0.015). Cb-TENS facilitated and accelerated FN recovery in the rat model, as it significantly reduced the recovery time for the whisker movement. The histopathological study and analysis of neurotrophic factors supported the role of cb-TENS in the enhanced regeneration of the FN.


Assuntos
Traumatismos do Nervo Facial/reabilitação , Nervo Facial/fisiologia , Regeneração Nervosa/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Axônios/fisiologia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Bainha de Mielina/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Resultado do Tratamento , Vibrissas/inervação
18.
Cell Mol Life Sci ; 78(21-22): 7043-7060, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34633482

RESUMO

Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17ß-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.


Assuntos
Genes Ligados ao Cromossomo X/genética , Histona Desmetilases/genética , Histonas/genética , Hipotálamo/fisiologia , Neurônios/fisiologia , Diferenciação Sexual/genética , Animais , Axônios/fisiologia , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Caracteres Sexuais
19.
Cell Rep ; 37(2): 109826, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644562

RESUMO

Motion/direction-sensitive and location-sensitive neurons are the two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It is under debate whether motion/direction-sensitive inputs preferentially target the superficial layers in V1, as opposed to the location-sensitive inputs, which preferentially target the middle layers. Here, by using calcium imaging to measure the activity of motion/direction-sensitive and location-sensitive axons in V1, we find evidence against these cell-type-specific laminar biases at the population level. Furthermore, using an approach to reconstruct axon arbors with identified in vivo response types, we show that, at the single-axon level, the motion/direction-sensitive axons project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1 at both the population and single-cell levels, providing further insight into the organization of thalamocortical projection in the mouse visual system.


Assuntos
Axônios/fisiologia , Percepção de Movimento , Orientação , Córtex Visual Primário/fisiologia , Tálamo/fisiologia , Animais , Sinalização do Cálcio , Feminino , Masculino , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Estimulação Luminosa , Córtex Visual Primário/citologia , Tálamo/citologia , Vias Visuais/citologia , Vias Visuais/fisiologia
20.
J Neural Eng ; 18(6)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706351

RESUMO

Objective.Computational models have shown that directional electrical contacts placed within the epineurium, between the fascicles, and not penetrating the perineurium, can achieve selectivity levels similar to point source contacts placed within the fascicle. The objective of this study is to test, in a murine model, the hypothesis that directed interfascicular contacts are selective.Approach.Multiple interfascicular electrodes with directional contacts, exposed on a single face, were implanted in the sciatic nerves of 32 rabbits. Fine-wire intramuscular wire electrodes were implanted to measure electromyographic (EMG) activity from medial and lateral gastrocnemius, soleus, and tibialis anterior muscles.Main results.The recruitment data demonstrated that directed interfascicular interfaces, which do not penetrate the perineurium, selectively activate different axon populations.Significance.Interfascicular interfaces that are inside the nerve, but do not penetrate the perineurium are an alternative to intrafascicular interfaces and may offer additional selectivity compared to extraneural approaches.


Assuntos
Nervos Periféricos , Estimulação Elétrica Nervosa Transcutânea , Animais , Axônios/fisiologia , Estimulação Elétrica/métodos , Eletrodos Implantados , Camundongos , Nervos Periféricos/fisiologia , Coelhos , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA