Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885700

RESUMO

Babesiosis is an infectious disease with an empty drug pipeline. A search inside chemical libraries for novel potent antibabesial candidates may help fill such an empty drug pipeline. A total of 400 compounds (200 drug-like and 200 probe-like) from the Malaria Box were evaluated in the current study against the in vitro growth of Babesia divergens (B. divergens), a parasite of veterinary and zoonotic importance. Novel and more effective anti-B. divergens drugs than the traditionally used ones were identified. Seven compounds (four drug-like and three probe-like) revealed a highly inhibitory effect against the in vitro growth of B. divergens, with IC50s ≤ 10 nanomolar. Among these hits, MMV006913 exhibited an IC50 value of 1 nM IC50 and the highest selectivity index of 32,000. The atom pair fingerprint (APfp) analysis revealed that MMV006913 and MMV019124 showed maximum structural similarity (MSS) with atovaquone and diminazene aceturate (DA), and with DA and imidocarb dipropionate (ID), respectively. MMV665807 and MMV665850 showed MMS with each other and with ID. Of note, a high concentration (0.75 IC50) of MMV006913 caused additive inhibition of B. divergens growth when combined with DA at 0.75 or 0.50 IC50. The Medicines for Malaria Venture box is a treasure trove of anti-B. divergens candidates according to the obtained results.


Assuntos
Babesia/efeitos dos fármacos , Babesiose/tratamento farmacológico , Patógenos Transmitidos pelo Sangue/efeitos dos fármacos , Malária/tratamento farmacológico , Animais , Antiprotozoários/farmacologia , Atovaquona/farmacologia , Babesia/patogenicidade , Babesiose/parasitologia , Diminazena/análogos & derivados , Diminazena/farmacologia , Humanos , Imidocarbo/análogos & derivados , Imidocarbo/farmacologia , Malária/epidemiologia , Malária/parasitologia , Plantas Medicinais/química
2.
Parasitol Int ; 85: 102431, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34352378

RESUMO

The effect of Zingiber officinale rhizome methanolic extract (ZOR) on the in vitro growth of bovine Babesia (B. bovis, B. bigemina, and B. divergens) and equine piroplasm (B. caballi, and Theileria equi) parasites and on the growth of B. microti in mice was evaluated in this study. The possible in vitro synergistic interaction between ZOR and either diminazene aceturate (DA) or potent Medicines for Malaria Venture (MMV) hits from the malaria box was also investigated. In vitro, ZOR reduced the growth of B. bovis, B. bigemina, T. equi, and B. caballi in a dose-dependent manner. B. divergens was the most susceptible parasite to the in vitro inhibitory effect of ZOR. DA and MMV compounds enhanced the in vitro inhibitory antibabesial activity of ZOR. 12.5 mg/kg DA when administrated in combination with ZOR in mice exhibited a significant inhibition (P < 0.05) in B. microti growth better than those observed after treatment with 25 mg/kg DA monotherapy. These findings suggest that ZOR could be a viable medicinal plant for babesiosis treatment, particularly when combined with a modest dose of either DA or powerful anti-B. bigemina MMV hits.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Theileria/efeitos dos fármacos , Zingiber officinale/química , Animais , Bovinos , Feminino , Cavalos , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Rizoma/química
3.
Parasitol Int ; 85: 102437, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34389492

RESUMO

Babesia gibsoni is a tick-transmitted intraerythrocytic apicomplexan parasite that causes babesiosis in dogs. Due to the strong side effects and lack of efficacy of current drugs, novel drugs against B. gibsoni are urgently needed. Natural products as a source for new drugs is a good choice for screening drugs against B. gibsoni. The current study focuses on identifying novel potential drugs from natural products against B. gibsoniin vitro. Parasite inhibition was verified using a SYBR green I-based fluorescence assay. A total of 502 natural product compounds were screened for anti-B. gibsoni activity in vitro. Twenty-four compounds showed high growth inhibition (>80%) on B. gibsoni and 5 plant-derived compounds were selected for further study. The half-maximal inhibitory concentration (IC50) values of lycorine (LY), vincristine sulfate (VS), emetine·2HCl (EME), harringtonine (HT) and cephaeline·HBr (CEP) were 784.4 ± 3.3, 643.0 ± 2.8, 253.1 ± 1.4, 23.4 ± 1.2, and 108.1 ± 4.3 nM, respectively. The Madin-Darby canine kidney (MDCK) cell line was used to assess cytotoxicity of hit compounds. All compounds showed minimal toxicity to the MDCK cells. The effects of hit compounds combined with diminazene aceturate (DA) on B. gibsoni were further evaluated in vitro. VS, EME, HT or CEP combined with DA showed synergistic effects against B. gibsoni, whereas LY combined with DA showed an antagonistic effect against B. gibsoni. The results obtained in this study indicate that LY, VS, EME, HT and CEP are promising compounds for B. gibsoni treatment.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Diminazena/análogos & derivados , Animais , Babesiose/parasitologia , Babesiose/prevenção & controle , Diminazena/farmacologia , Doenças do Cão/parasitologia , Doenças do Cão/prevenção & controle , Cães , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50
4.
Pol J Vet Sci ; 24(1): 79-84, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33847097

RESUMO

Essential oils from plants used in traditional medicine are known as a rich source of chemically diverse compounds with specific biological activities. Achillea millefolium essential oil (AEO) was screened for in vitro activity against Babesia canis. The AEO was obtained by hydrodistillation and analysed by gas chromatography coupled to mass spectrometry (GC-MS). GC-MS revealed the presence of 47 compounds in the essential oil. Those present in the highest concentrations were chamazulene (34.45%), ß-caryophyllene (8.93%), (E)-germacrene D (7.55%), patchoulene (7.27%), ß-guaiene (4.62%), α-humulene (4.59%), santolina epoxide (4.41%), ethyl iso-allocholate (2.97%), aromadendrene (2.62%), and neoclovenoxid-alkohol (2.46%). AEO was found to be active in vitro against B. canis, with 50% inhibitory concentration (IC50) values of 0.06 mg/mL, as compared to imidocarb, with IC50 = 0.007 mg/mL. The study confirms that essential oil from A. millefolium has anti-babesial properties in vitro.


Assuntos
Achillea/química , Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Antiprotozoários/química , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Óleos de Plantas/química
5.
Vet Parasitol ; 283: 109177, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32629205

RESUMO

Babesia canis is the predominant and clinically relevant canine Babesia species in Europe. Transmitted by vector ticks, the parasite enters red blood cells and induces a severe, potentially fatal hemolytic anemia. Here, we report on the antibabesial activities of three extracts of the West African tropical plant species Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae) and of 13 genuine naphthylisoquinoline alkaloids isolated thereof. Two of the extracts and eight of the alkaloids were found to display strong activities against Babesia canis in vitro. Among the most potent compounds were the C,C-coupled dioncophyllines A (1a) and C (2) and the N,C-linked alkaloids ancistrocladium A (3) and B (4), with half-maximum inhibition concentration (IC50) values of 0.48 µM for 1a, 0.85 µM for 2, 1.90 µM for 3, and 1.23 µM for 4. Structure-activity relationship (SAR) studies on a small library of related genuine analogs and non-natural synthetic derivatives of 1a and 2 revealed the likewise naturally occurring alkaloid N-methyl-7-epi-dioncophylline A (6b) to be the most potent (IC50, 0.14 µM) among the investigated compounds. Although none of the tested naphthylisoquinolines showed 100 % inhibition of parasite infection - as displayed by imidocarb dipropionate (IC50, 0.07 µM), which was used as a positive control - the antibabesial potential of the dioncophyllines A (1a) and C (2) and related compounds such as 6b, its atropo-diastereomer 6a (IC50, 1.45 µM), and 8-O-(p-nitrobenzyl)dioncophylline A (14) (IC50, 0.82 µM) is to be considered as high. The SAR results showed that N-methylation and axial chirality exert a strong impact on the antibabasial activities of the naphthylisoquinolines presented here, whereas dimerization, as in jozimine A2 (5) (IC50, 140 µM), leads to a significant decrease of activity against B. canis. Alkaloids displaying good to high activities against B. canis like the dioncophyllines 1a, 2, 6a, and 6b were found to cause only a small degree of hemolysis (< 0.7 %), whereas compounds with moderate to weak antibabesial activities such as 6-O-methyl-4'-O-demethylancistrocladine (15a) (IC50, 14.0 µM) and its atropo-diastereomer 6-O-methyl-4'-O-demethylhamatine (15b) (IC50, 830 µM) caused a high degree of hemolysis (7.3 % for 15a and 11.2 % for 15b). In this respect, the most effective anti-Babesia naphthylisoquinolines are also the safest ones.


Assuntos
Alcaloides/farmacologia , Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Magnoliopsida/química , Extratos Vegetais/farmacologia , Alcaloides/química , Antiprotozoários/química , Dioncophyllaceae/química , Extratos Vegetais/química
6.
Pol J Vet Sci ; 23(1): 161-163, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32233296

RESUMO

The in vitro anti-Babesia canis activities of nine essential oils were investigated. Among the tested essential oils Achillea millefolium, Eugenia caryophyllus and Citrus grandis were the most active (IC50 values of 51.0, 60.3 and 61.3 µg/mL, respectively). The oils from Abies sibirica, Rosmarinus officinalis, Eucalyptus globulus, Cinnamonum zeylanicum, Mentha piperita and Pinus sylvestris were less active (IC50 values of 134.3, 237.3, 239.3, 367.9, 837.5 and 907.3 µg/mL, respectively). The results support the concept that some essential oil constituents may be useful in the clinical management of babesiosis.


Assuntos
Antibacterianos/farmacologia , Babesia/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Plantas/química , Babesiose/tratamento farmacológico , Concentração Inibidora 50 , Óleos de Plantas/química
7.
BMC Complement Med Ther ; 20(1): 87, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183812

RESUMO

BACKGROUND: The antiprotozoal and antioxidant activities of Viola tricolor and Laurus nobilis have been reported recently. Thus, the existing study pursued to assess the growth inhibition effect of methanolic extract of V. tricolor (MEVT) and acetonic extract of L. nobilis (AELN) against five Babesia parasites and Theileria equi in vitro and in vivo. RESULTS: MEVT and AELN suppressed Babesia bovis, B. bigemina, B. divergens, B. caballi, and T. equi growth at half-maximal inhibitory concentration (IC50) values of 75.7 ± 2.6, 43.3 ± 1.8, 67.6 ± 2.8, 48 ± 3.8, 54 ± 2.1 µg/mL, and 86.6 ± 8.2, 33.3 ± 5.1, 62.2 ± 3.3, 34.5 ± 7.5 and 82.2 ± 9.3 µg/mL, respectively. Qualitative phytochemical estimation revealed that both extracts containing multiple bioactive constituents and significant amounts of flavonoids and phenols. The toxicity assay revealed that MEVT and AELN affected the mouse embryonic fibroblast (NIH/3 T3) and Madin-Darby bovine kidney (MDBK) cell viability with half-maximum effective concentrations (EC50) of 930 ± 29.9, 1260 ± 18.9 µg/mL, and 573.7 ± 12.4, 831 ± 19.9 µg/mL, respectively, while human foreskin fibroblasts (HFF) cell viability was not influenced even at 1500 µg/mL. The in vivo experiment revealed that the oral administration of MEVT and AELN prohibited B. microti multiplication in mice by 35.1 and 56.1%, respectively. CONCLUSIONS: These analyses indicate the prospects of MEVT and AELN as good candidates for isolating new anti-protozoal compounds which could assist in the development of new drug molecules with new drug targets.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Laurus/química , Extratos Vegetais/farmacologia , Theileria/efeitos dos fármacos , Viola/química , Acetona , Antiprotozoários/química , Cromatografia Gasosa-Espectrometria de Massas , Metanol , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
8.
Molecules ; 25(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102270

RESUMO

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Assuntos
Antiprotozoários/farmacologia , Babesia bovis/efeitos dos fármacos , Babesia microti/efeitos dos fármacos , Babesia/efeitos dos fármacos , Cinnamomum zeylanicum/química , Compostos Fitoquímicos/farmacologia , Theileria/efeitos dos fármacos , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Antiprotozoários/isolamento & purificação , Babesia/crescimento & desenvolvimento , Babesia bovis/crescimento & desenvolvimento , Babesia microti/crescimento & desenvolvimento , Bovinos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Concentração Inibidora 50 , Camundongos , Células NIH 3T3 , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Saponinas/isolamento & purificação , Saponinas/farmacologia , Taninos/isolamento & purificação , Taninos/farmacologia , Terpenos/isolamento & purificação , Terpenos/farmacologia , Theileria/crescimento & desenvolvimento
9.
Molecules ; 25(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012795

RESUMO

Berberis vulgaris (B. vulgaris) and Rhus coriaria (R. coriaria) have been documented to have various pharmacologic activities. The current study assessed the in vitro as well as in vivo inhibitory efficacy of a methanolic extract of B. vulgaris (MEBV) and an acetone extract of R. coriaria (AERC) on six species of piroplasm parasites. The drug-exposure viability assay was tested on three different cell lines, namely mouse embryonic fibroblast (NIH/3T3), Madin-Darby bovine kidney (MDBK) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that both extracts containing alkaloid, tannin, saponins and terpenoids and significant amounts of flavonoids and polyphenols. The GC-MS analysis of MEBV and AERC revealed the existence of 27 and 20 phytochemical compounds, respectively. MEBV and AERC restricted the multiplication of Babesia (B.) bovis, B. bigemina, B. divergens, B. caballi, and Theileria (T.) equi at the half-maximal inhibitory concentration (IC50) of 0.84 ± 0.2, 0.81 ± 0.3, 4.1 ± 0.9, 0.35 ± 0.1 and 0.68 ± 0.1 µg/mL and 85.7 ± 3.1, 60 ± 8.5, 90 ± 3.7, 85.7 ± 2.1 and 78 ± 2.1 µg/mL, respectively. In the cytotoxicity assay, MEBV and AERC inhibited MDBK, NIH/3T3 and HFF cells with half-maximal effective concentrations (EC50) of 695.7 ± 24.9, 931 ± 44.9, ˃1500 µg/mL and 737.7 ± 17.4, ˃1500 and ˃1500 µg/mL, respectively. The experiments in mice showed that MEBV and AERC prohibited B. microti multiplication at 150 mg/kg by 66.7% and 70%, respectively. These results indicate the prospects of these extracts as drug candidates for piroplasmosis treatment following additional studies in some clinical cases.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Babesiose/tratamento farmacológico , Berberis/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Rhus/química , Acetona/química , Animais , Babesiose/parasitologia , Feminino , Humanos , Metanol/química , Camundongos , Camundongos Endogâmicos BALB C
10.
Vet Parasitol ; 279: 109013, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32070899

RESUMO

Absence of an effective high-throughput drug-screening system for Babesia parasites is considered one of the main causes for the presence of a wide gap in the treatment of animal babesiosis when compared with other hemoprotozoan diseases, such as malaria. Recently, a simple, accurate, and automatic fluorescence assay was established for large-scale anti-Babesia (B. bovis, B. bigemina, B. divergens, B. caballi and T. equi) drug screening. Such development will facilitate anti-Babesia drug discovery, especially in the post-genomic era, which will bring new chemotherapy targets with the completion of the Babesia genome sequencing project currently in progress. In this review, we present the current progress in the various assays for in vitro and in vivo anti-Babesia drug testing, as well as the challenges, highlighting new insights into the future of anti-Babesia drug screening.


Assuntos
Babesia/efeitos dos fármacos , Babesiose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/veterinária , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas In Vitro/métodos , Técnicas In Vitro/veterinária
11.
Pol J Vet Sci ; 22(2): 369-376, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31269341

RESUMO

Despite many phytochemical and pharmacological investigations, to date, there are no reports concerning the antibabesial activity of extracts of A. millefolium against B. canis. This study was aimed at investigating the biological activities of A. millefolium against the Babesia canis parasite and to identify its chemical ingredients. The water (WE), ethanol (EE) and hexane/acetone (H/AE) extracts of plant aerial parts were screened for total phenolic content (TPC), total flavonoid compound (TFC), DPPH free radical-scavenging activity and its antibabesial activity assay. In this study, imidocarb diproprionate was used as a positive control. The H/AE and EE extracts were analysed using gas chromatography-mass spectroscopy (GC-MS). In the EE extract, the main compounds were 17.64% methyl octadec-9-ynoate, 16.68% stigmast-5-en-3-ol(3α,24S) and 15.17% hexadecanoic acid. In the H/AE extract, the main compounds were 34.55% 11-decyldocosane, 14.31% N-tetratetracontane, 8.22% ß-caryophyllene, and 7.69% N-nonacosane. Extract of EE contained the highest content of phenolics followed by H/AE and WE. The concentration of flavonoids in EE, H/AE and WE extracts showed that TFC was higher in the EE samples followed by H/AE and WE. The antioxidant activities were highest for AA, followed by EE, WE and H/AE. The antibabesial assay showed that the WE, EE and H/AE extracts of A. millefolium were antagonistic to B. canis. At a 2 mg/mL concentration, it showed 58.7% (± 4.7%), 62.3% (± 5.5%) and 49.3% (± 5.1%) inhibitory rate in an antibabesial assay, respectively. Considering these results, the present findings suggest that A. millefolium extracts may be a potential therapeutic agent and that additional studies including in vivo experiments are essential.


Assuntos
Achillea/química , Antioxidantes/farmacologia , Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antiprotozoários/química , Compostos de Bifenilo , Cães/sangue , Flavonoides/química , Hemólise/efeitos dos fármacos , Picratos , Extratos Vegetais/química , Polifenóis/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-31254719

RESUMO

Diminazene aceturate (DA) and imidocarb dipropionate are commonly used in livestock as antipiroplasm agents. However, toxic side effects are common in animals treated with these two drugs. Therefore, evaluations of novel therapeutic agents with high efficacy against piroplasm parasites and low toxicity to host animals are of paramount importance. In this study, the 400 compounds in the Pathogen Box provided by the Medicines for Malaria Venture foundation were screened against Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi. A fluorescence-based method using SYBR Green 1 stain was used for initial in vitro screening and determination of the half maximal inhibitory concentration (IC50). The initial in vitro screening performed using a 1 µM concentration as baseline revealed nine effective compounds against four tested parasites. Two "hit" compounds, namely MMV021057 and MMV675968, that showed IC50 < 0.3 µM and a selectivity index (SI)> 100 were selected. The IC50s of MMV021057 and MMV675968 against B. bovis, B. bigemina, T. equi and B. caballi were 23, 39, 229, and 146 nM, and 2.9, 3, 25.7, and 2.9 nM, respectively. In addition, a combination of MMV021057 and DA showed additive or synergistic effects against four tested parasites, while combinations of MMV021057 with MMV675968 and of MMV675968 with DA showed antagonistic effects. In mice, treated with 50 mg/kg MMV021057 and 25 mg/kg MMV675968 inhibited the growth of Babesia microti by 54 and 64%, respectively, as compared to the untreated group on day 8. Interestingly, a combination treatment with 6.25 mg/kg DA and 25 mg/kg MMV021057 inhibited B. microti by 91.6%, which was a stronger inhibition than that by single treatments with 50 mg/kg MMV021057 and 25 mg/kg DA, which showed 54 and 83% inhibition, respectively. Our findings indicated that MMV021057, MMV675968, and the combination treatment with MMV021057 and DA are prospects for further development of antipiroplasm drugs.


Assuntos
Antipruriginosos/administração & dosagem , Babesia/efeitos dos fármacos , Babesiose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/parasitologia , Theileria/efeitos dos fármacos , Theileriose/tratamento farmacológico , Animais , Babesia/fisiologia , Babesiose/sangue , Babesiose/parasitologia , Bovinos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Theileria/fisiologia , Theileriose/sangue , Theileriose/parasitologia
13.
Ticks Tick Borne Dis ; 10(5): 949-958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101552

RESUMO

Currently, chemotherapeutics against piroplasmosis are also associated with toxicity and the emergence of drug-resistant parasites. Therefore, the discovery of new drug compounds is necessary for the effective control of bovine and equine piroplasms. Syzygium aromaticum (clove) and Camellia sinensis (green tea) have several documented medicinal properties. In the present study, the growth-inhibiting effects of S. aromaticum and C. sinensis methanolic extracts were evaluated in vitro and in vivo. The half-maximal inhibitory concentration (IC50) values for methanolic S. aromaticum against Babesia bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi were 109.8 ± 3.8, 8.7 ± 0.09, 76.4 ± 4.5, 19.6 ± 2.2, and 60 ± 7.3 µg/ml, respectively. Methanolic C. sinensis exhibited IC50 values of 114 ± 6.1, 71.3 ± 3.7, 35.9 ± 6.8, 32.7 ± 20.3, and 60.8 ± 7.9 µg/ml against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, respectively. The toxicity assay on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines showed that methanolic S. aromaticum and methanolic C. sinensis affected only the viability of the MDBK cell line with half-maximal effective concentrations (EC50) of 894.7 ± 4.9 and 473.7 ± 7.4 µg/ml, respectively, while the viability of NIH/3T3 and HFF cell lines was not affected even at 1000 µg/ml. In the in vivo experiment, methanolic S. aromaticum and methanolic C. sinensis oral treatments at 150 mg/kg inhibited the growth of Babesia microti in mice by 69.2% and 42.4%, respectively. These findings suggest that methanolic S. aromaticum and methanolic C. sinensis extracts have the potential as alternative remedies for treating piroplasmosis.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Camellia sinensis/química , Extratos Vegetais/farmacologia , Syzygium/química , Theileria/efeitos dos fármacos , Células 3T3 , Animais , Babesia/crescimento & desenvolvimento , Linhagem Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Extratos Vegetais/química , Especificidade da Espécie , Theileria/crescimento & desenvolvimento
14.
PLoS Negl Trop Dis ; 13(5): e0007030, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125333

RESUMO

BACKGROUND: Chemotherapy is a principle tool for the control and prevention of piroplasmosis. The search for a new chemotherapy against Babesia and Theileria parasites has become increasingly urgent due to the toxic side effects of and developed resistance to the current drugs. Chalcones have attracted much attention due to their diverse biological activities. With the aim to discover new drugs and drug targets, in vitro and in vivo antibabesial activity of trans-chalcone (TC) and chalcone 4 hydrate (CH) alone and combined with diminazene aceturate (DA), clofazimine (CF) and atovaquone (AQ) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: The fluorescence-based assay was used for evaluating the inhibitory effect of TC and CH on four Babesia species, including B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi, the combination with DA, CF, and AQ on in vitro cultures, and on the multiplication of a B. microti-infected mouse model. The cytotoxicity of compounds was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3), and human foreskin fibroblast (HFF) cell lines. The half maximal inhibitory concentration (IC50) values of TC and CH against B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi were 69.6 ± 2.3, 33.3 ± 1.2, 64.8 ± 2.5, 18.9 ± 1.7, and 14.3 ± 1.6 µM and 138.4 ± 4.4, 60.9 ± 1.1, 82.3 ± 2.3, 27.9 ± 1.2, and 19.2 ± 1.5 µM, respectively. In toxicity assays, TC and CH affected the viability of MDBK, NIH/3T3, and HFF cell lines the with half maximum effective concentration (EC50) values of 293.9 ± 2.9, 434.4 ± 2.7, and 498 ± 3.1 µM and 252.7 ± 1.7, 406.3 ± 9.7, and 466 ± 5.7 µM, respectively. In the mouse experiment, TC reduced the peak parasitemia of B. microti by 71.8% when administered intraperitoneally at 25 mg/kg. Combination therapies of TC-DA and TC-CF were more potent against B. microti infection in mice than their monotherapies. CONCLUSIONS/SIGNIFICANCE: In conclusion, both TC and CH inhibited the growth of Babesia and Theileria in vitro, and TC inhibited the growth of B. microti in vivo. Therefore, TC and CH could be candidates for the treatment of piroplasmosis after further studies.


Assuntos
Antiprotozoários/administração & dosagem , Babesia/efeitos dos fármacos , Babesia/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Chalconas/administração & dosagem , Theileria/efeitos dos fármacos , Theileria/crescimento & desenvolvimento , Theileriose/tratamento farmacológico , Animais , Antiprotozoários/química , Babesia/genética , Babesiose/parasitologia , Linhagem Celular , Chalconas/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Theileria/genética , Theileriose/parasitologia
15.
Parasit Vectors ; 12(1): 269, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138282

RESUMO

BACKGROUND: There are no effective vaccines against Babesia and Theileria parasites; therefore, therapy depends heavily on antiprotozoal drugs. Treatment options for piroplasmosis are limited; thus, the need for new antiprotozoal agents is becoming increasingly urgent. Ellagic acid (EA) is a polyphenol found in various plant products and has antioxidant, antibacterial and effective antimalarial activity in vitro and in vivo without toxicity. The present study documents the efficacy of EA and EA-loaded nanoparticles (EA-NPs) on the growth of Babesia and Theileria. METHODS: In this study, the inhibitory effect of EA, ß-cyclodextrin ellagic acid (ß-CD EA) and antisolvent precipitation with a syringe pump prepared ellagic acid (APSP EA) was evaluated on four Babesia species and Theileria equi in vitro, and on the multiplication of B. microti in mice. The cytotoxicity assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cell lines. RESULTS: The half-maximal inhibitory concentration (IC50) values of EA and ß-CD EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 9.58 ± 1.47, 7.87 ± 5.8, 5.41 ± 2.8, 3.29 ± 0.42 and 7.46 ± 0.6 µM and 8.8 ± 0.53, 18.9 ± 0.025, 11 ± 0.37, 4.4 ± 0.6 and 9.1 ± 1.72 µM, respectively. The IC50 values of APSP EA on B. bovis, B. bigemina, B. divergens, B. caballi and T. equi were 4.2 ± 0.42, 9.6 ± 0.6, 2.6 ± 1.47, 0.92 ± 5.8 and 7.3 ± 0.54 µM, respectively. A toxicity assay showed that EA, ß-CD EA and APSP EA affected the viability of cells with a half-maximal effective concentration (EC50) higher than 800 µM. In the experiments on mice, APSP EA at a concentration of 70 mg/kg reduced the peak parasitemia of B. microti by 68.1%. Furthermore, the APSP EA-atovaquone (AQ) combination showed a higher chemotherapeutic effect than that of APSP EA monotherapy. CONCLUSIONS: To our knowledge, this is the first study to demonstrate the in vitro and in vivo antibabesial action of EA-NPs and thus supports the use of nanoparticles as an alternative antiparasitic agent.


Assuntos
Antiprotozoários/farmacologia , Babesia microti/efeitos dos fármacos , Babesia/efeitos dos fármacos , Ácido Elágico/farmacologia , Theileria/efeitos dos fármacos , Animais , Babesia/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Bovinos , Linhagem Celular , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Extratos Vegetais/farmacologia , Theileria/crescimento & desenvolvimento , Theileriose/tratamento farmacológico
16.
Sci Rep ; 7(1): 12774, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038534

RESUMO

In this study, we evaluated the validity of a fluorescence-based assay using SYBR Green I (SG I) stain for screening antibabesial compounds against B. microti in mice. Two different hematocrits (HCTs; 2.5% and 5%) were used. Correlating relative fluorescence units (RFUs) with parasitemia showed significant linear relationships with R2 values of 0.97 and 0.99 at HCTs of 2.5% and 5%, respectively. Meanwhile, the Z' factors in a high-throughput screening (HTS) assay were within the permissible limit (≥0.5) at 2.5% HCT and lower than this value at 5% HCT. Taken together, the highest signal-to-noise (S/N) ratios were obtained at 2.5% HCT; therefore, we concluded that 2.5% was the best HCT for applying fluorescence assay in antibabesial drug screening in mice. Additionally, positive control mice and those treated with diminazene aceturate, pyronaridine tetraphosphate, and an allicin/diminazene aceturate combination showed peak parasitemia and fluorescence values on the same day post-inoculation. Moreover, using different concentrations of SG I revealed that the optimal concentration was 2x. In summary, considering that all experiments were applied under optimal laboratory conditions, fluorescence assay at 2.5% HCT using 2x SG I for B. microti parasite offers a novel approach for drug screening in mice.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Anemia/tratamento farmacológico , Anemia/parasitologia , Animais , Benzotiazóis , Diaminas , Diminazena/análogos & derivados , Diminazena/farmacologia , Diminazena/uso terapêutico , Quimioterapia Combinada , Feminino , Fluorescência , Hematócrito , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos Endogâmicos BALB C , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Ácidos Nucleicos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Compostos Orgânicos/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Quinolinas , Reprodutibilidade dos Testes
17.
PLoS One ; 10(4): e0125276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915529

RESUMO

A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses.


Assuntos
Antiparasitários/farmacologia , Babesia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Theileria/efeitos dos fármacos , Animais , Antiparasitários/química , Babesia/crescimento & desenvolvimento , Bovinos/parasitologia , Células Cultivadas , Hematócrito , Cavalos/parasitologia , Microscopia de Fluorescência , Theileria/crescimento & desenvolvimento
18.
Parasitology ; 137(5): 785-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20025823

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is the major tea catechin and accounts for 50-80% of the total catechin in green tea. (-)-Epigallocatechin-3-gallate has antioxidant, anti-inflammatory, anti-microbial, anti-cancer, and anti-trypanocidal activities. This report describes the inhibitory effect of (-)-Epigallocatechin-3-gallate on the in vitro growth of bovine Babesia parasites and the in vivo growth of the mouse-adapted rodent babesia B. microti. The in vitro growth of the Babesia species was significantly (P<0.05) inhibited in the presence of micromolar concentrations of EGCG (IC50 values=18 and 25 microM for B. bovis, and B. bigemina, respectively). The parasites showed no re-growth at 25 microM for B. bovis and B. bigemina in the subsequent viability test. The drug significantly (P<0.05) inhibited the growth of B. microti at doses of 5 and 10 mg/kg body weight, and the parasites completely cleared on day 14 and 16 post-inoculation in the 5 and 10 mg/kg treated groups, respectively. These findings highlight the potentiality of (-)-Epigallocatechin-3-gallate as a chemotherapeutic drug for the treatment of babesiosis.


Assuntos
Babesia/efeitos dos fármacos , Camellia sinensis/química , Catequina/análogos & derivados , Animais , Babesia/crescimento & desenvolvimento , Babesiose/sangue , Babesiose/parasitologia , Catequina/farmacologia , Eritrócitos/parasitologia , Feminino , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/sangue , Parasitemia/tratamento farmacológico
19.
Biosci Biotechnol Biochem ; 73(3): 776-80, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19270401

RESUMO

One new curcuminoid, 3'-demethoxycyclocurcumin (1), was isolated from Curcuma xanthorrhiza as an antibabesial compound, together with p-hydroxybenzaldehyde (2) and cleomiscosin A (3) from Brucea javanica and (+)-epiloliolide (4) from Excoecaria cochinchinensis. The antibabesial activities were examined in vitro, and compounds 1-4, and diminazene aceturate were studied with IC(50) values of 16.6, 7.6, 15.6, 10.0, and 0.6 microg/ml, respectively.


Assuntos
Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Brucea/química , Curcuma/química , Euphorbiaceae/química , Animais , Antiprotozoários/química , Plantas Medicinais/química
20.
J Vet Med Sci ; 71(1): 33-41, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19194074

RESUMO

Bruceine A, a natural quassinoid compound extracted from the dried fruits of Brucea javanica (L.) Merr., was evaluated for its antibabesial activity in vitro and in vivo. Bruceine A inhibited the in vitro growth of Babesia gibsoni in canine erythrocytes at lower concentration compared with the standard antibabesial drug diminazene aceturate and killed the parasites within 24 hr at a concentration of 25 nM. Oral administration of bruceine A at a dosage of 6.4 mg/kg/day for 5 days resulted in no clinical findings in a dog with normal ranges of hematological and biochemical values in the blood. Three dogs were infected with B. gibsoni and two of them were treated with bruceine A at a dosage of 6.4 mg/kg/day for 6 days from day 5 post-infection. An untreated dog developed typical acute babesiosis symptoms including severe anemia, high fever, and complete loss of appetite and movement. However, the two bruceine A-treated dogs maintained their healthy conditions throughout the experimental period of 4 weeks although complete elimination of parasites from the peripheral blood was not achieved and decreases in the packed cell volume and the erythrocyte and platelet counts were observed. Since natural quassinoid compounds have been used as traditional medicines for the treatment of various ailments including cancer and malaria, the present results suggest that bruceine A or other related compounds are potential candidates for the treatment of canine babesiosis.


Assuntos
Babesia/efeitos dos fármacos , Babesiose/veterinária , Brucea/química , Doenças do Cão/tratamento farmacológico , Quassinas/uso terapêutico , Administração Oral , Animais , Babesia/genética , Babesiose/tratamento farmacológico , Cães , Cinética , Parasitemia/veterinária , Reação em Cadeia da Polimerase/veterinária , Quassinas/administração & dosagem , Quassinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA