Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 169, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649058

RESUMO

Endophytes, especially those isolated from herbal plants, may act as a reservoir of a variety of secondary metabolites exhibiting biological activity. Some endophytes express the ability to produce the same bioactive compounds as their plant hosts, making them a more sustainable industrial supply of these substances. Urtica dioica L. (common stinging nettle) is a synanthropic plant that is widely used in herbal medicine due to the diversity of bioactive chemicals it contains, e.g., polyphenols, which demonstrate anti-inflammatory, antioxidant, and anti-cancerous capabilities. This study aimed at isolating endophytic bacteria from stinging nettles for their bioactive compounds. The endophytic isolates were identified by both biochemical and molecular methods (16S rRNA) and investigated for enzymes, biosurfactants, and polyphenols production. Each of the isolated bacterial strains was capable of producing biosurfactants and polyphenols. However, three of the isolated endophytes, identified as two strains of Bacillus cereus and one strain of Bacillus mycoides, possessed the greatest capacity to produce biosurfactants and polyphenols. The derivatized extracts from culture liquid showed the 1.633 mol l-1 (9.691 mg l-1) concentration of polyphenol compounds. Therefore, the present study signifies that endophytic B. cereus and B. mycoides isolated from Urtica dioica L. could be a potential source of biosurfactants and polyphenols. However, further study is required to understand the mechanism of the process and achieve efficient polyphenol production by endophytic bacteria.


Assuntos
Bactérias , Urtica dioica , Urtica dioica/microbiologia , Bacillus cereus/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Endófitos/química , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Polifenóis/análise , Enzimas/metabolismo , Genótipo
2.
J Hazard Mater ; 457: 131713, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301074

RESUMO

Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Selênio/metabolismo , Bacillus cereus/metabolismo , Oxirredução
3.
Int Microbiol ; 26(3): 529-542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36680696

RESUMO

Biosurfactants are amphiphilic compounds with extensive applications in oily contaminated environments to remove hydrocarbons. Moreover, enzymes such as laccase and manganese peroxidase are responsible for the oxidation of a variety of phenolic compounds and aromatic amines. Therefore, in the present study, bacteria with the potential to produce biosurfactants and enzymes (namely, laccase, manganese peroxidase, and endoglucanase carboxymethyl cellulose (CMCase)) were isolated from petroleum oil-contaminated soil. From 15 isolated bacteria, three isolates were selected as the best producers of biosurfactants according to the related tests, such as tests for surface tension reduction. These three bacteria indicated tolerance to a salinity test and were classified as resistant and very resistant. The isolates 3, 12, 13, and 14 showed positive results for the degradation of guaiacol, phenol red, and carboxymethylcellulose, as well as the decoloration of methylene blue by the creation of a clear halo around the bacterial colony. Upon the quantitation of the laccase and manganese peroxidase activities, 22.58 U/L and 21.81 U/L, respectively, were measured by isolate 13. Furthermore, CMCase activity was recorded with 0.057436 U/ml belonging to isolate 14. Bacterial strains with appreciable laccase, peroxidase, CMCase activity, and biosurfactant production potentials were identified through 16S rDNA sequence analysis as Bacillus sp. (isolate 3), Bacillus toyonensis (isolate 12), Bacillus cereus (isolate 13), and Bacillus tropicus (isolate 14), and their nucleotide sequences were deposited in the GenBank. The potentials for the industrial applicability of the biosurfactants and enzymes abound, and production needs to be optimized by the selected bacterial strains.


Assuntos
Lacase , Petróleo , Petróleo/metabolismo , Petróleo/microbiologia , Hidrocarbonetos/metabolismo , Bacillus cereus/metabolismo , Solo , Biodegradação Ambiental
4.
Biol Trace Elem Res ; 200(2): 812-821, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33740179

RESUMO

Cadmium (Cd) poisoning in humans and fish represents a significant global problem. Bacillus cereus (B. cereus) is a widely used probiotic in aquaculture. The objective of this study was to evaluate the potential of B. cereus in ameliorating Cd-induced toxicity in mirror carp. The biosorption rate of Zn for the B. cereus in 85.99% was significantly more than five strains. All fishes were exposed for 30 days to dietary ZnCl2 (30mg/kg), waterborne Cd (1 mg/L), and/or dietary Zn-enriched B. cereus (Zn 30mg/kg and 107cfu/g B. cereus). At 15 and 30 days, the fishes were sampled, and bioaccumulation, antioxidant activity, and intestinal microbiota were measured. Waterborne Cd exposure caused marked alterations in the composition of the microbiota. Dietary supplementation with Zn-enriched B. cereus can reduce the changes in the composition of intestinal microbiota in Cd exposure and decrease the pathogenic bacteria of Flavobacterium and Pseudomonas in Zn-enriched B. cereus groups. The results obtained indicate that Zn-enriched B. cereus can provide a significant protective effect on the toxicity of cadmium by inhibiting alterations in the levels of bioaccumulation and antioxidant enzyme including superoxide dismutase (SOD), catalase (CAT), total antioxidant (T-AOC), and malonaldehyde (MDA). Our results suggest that administration of Zn-enriched B. cereus has the potential to combat Cd toxicity in mirror carp.


Assuntos
Carpas , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bacillus cereus/metabolismo , Bioacumulação , Cádmio/toxicidade , Carpas/metabolismo , Estresse Oxidativo , Zinco/farmacologia
5.
Toxins (Basel) ; 13(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34564676

RESUMO

Due to its food-poisoning potential, Bacillus cereus has attracted the attention of the food industry. The cereulide-toxin-producing subgroup is of particular concern, as cereulide toxin is implicated in broadscale food-borne outbreaks and occasionally causes fatalities. The health risks associated with long-term cereulide exposure at low doses remain largely unexplored. Natural substances, such as plant-based secondary metabolites, are widely known for their effective antibacterial potential, which makes them promising as ingredients in food and also as a surrogate for antibiotics. In this work, we tested a range of structurally related phytochemicals, including benzene derivatives, monoterpenes, hydroxycinnamic acid derivatives and vitamins, for their inhibitory effects on the growth of B. cereus and the production of cereulide toxin. For this purpose, we developed a high-throughput, small-scale method which allowed us to analyze B. cereus survival and cereulide production simultaneously in one workflow by coupling an AlamarBlue-based viability assay with ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). This combinatory method allowed us to identify not only phytochemicals with high antibacterial potential, but also ones specifically eradicating cereulide biosynthesis already at very low concentrations, such as gingerol and curcumin.


Assuntos
Bacillus cereus/efeitos dos fármacos , Bacillus cereus/metabolismo , Depsipeptídeos/metabolismo , Depsipeptídeos/toxicidade , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/microbiologia , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/uso terapêutico , Bioensaio/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos
6.
Int J Biol Macromol ; 161: 875-890, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535205

RESUMO

This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg-1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0-7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 µmol·s-1, 94 µmol, 0.029 s-1 and 3.13 × 10-4 s-1·µmol-1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine  dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/imunologia , Cloranila/metabolismo , Galactosiltransferases/imunologia , Hidroxilação/fisiologia , Pentaclorofenol/metabolismo , Fenilalanina/metabolismo , Cinética , Oxirredutases/metabolismo
7.
J Pharm Biomed Anal ; 186: 113315, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361469

RESUMO

A magnetic solid-phase extraction (MSPE) method was developed for simultaneous preconcentrations of U(VI) and Th(IV) before their measurements by inductively coupled plasma optical emission spectrometry (ICP-OES). The main idea of this biotechnological application depends on the use of bacteria, thermophilic Bacillus cereus SO-14, as a solid-phase biosorbent. It was immobilized to γ-Fe2O3 magnetic nanoparticles and used for MSPE. Characterization of the biosorbent was performed using the scanning electron microscope (SEM), the energy dispersive X-ray (EDX) and Fourier transform infrared (FT-IR) spectroscopy. Also, the the best conditions of experimental parameters were examined, and the reliability of the method developed was verified by applying the certified reference materials. Limit of detections (LODs) of the U(VI) and Th(IV) was calculated as 0.008 and 0.013 ng mL-1 respectively. Relative standard deviations (RSDs) were found to be 1.6 and 2.4 %, respectively, for U(VI) and Th(IV). R2 was also calculated as 0.9991. Preconcentration factors were achieved as 100 for both elements. It should be highlighted that LODs were critically improved and the sensitivity of ICP-OES was enhanced.


Assuntos
Monitoramento Ambiental/métodos , Extração em Fase Sólida/métodos , Tório/análise , Urânio/análise , Bacillus cereus/metabolismo , Limite de Detecção , Fenômenos Magnéticos , Nanopartículas de Magnetita , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375492

RESUMO

Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCERhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.


Assuntos
Bacillus cereus/metabolismo , Biodegradação Ambiental , Furanos/metabolismo , Interações Microbianas , Rhodococcus/metabolismo , Estresse Fisiológico , Poluentes Ambientais/metabolismo , Concentração de Íons de Hidrogênio
9.
Pak J Pharm Sci ; 32(2 (Supplementary)): 889-894, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31103988

RESUMO

Amylases are enzymes that catalyze the hydrolysis of starch into highly valuable products of economic significance. Amylases are used extensively in various industrial sectors. Microbial sources particularly Bacillus species are well known for the cost effective commercial production of amylase enzyme. Present study focuses on the enhancement of amylase enzyme production from an indigenously isolated Bacillus cereus AS2 strain via one variable at a time (OVAT) optimization of different physical and chemical factors. Purposely, eight parameters possibly affecting the amylase production including temperature, pH, incubation time, inoculum size, substrate concentration, metal ions, carbon and nitrogen sources were investigated. According to the results, amylase production was significantly boosted at maximum when the Bacillus cereus AS2 was grown at 45°C on pH 7.0 for 72 hours in the medium supplemented with 4% starch and 0.5% glycine. Among the different metal ions tested, CaCl2 (0.05%) was found significant to accelerate extracellular amylase production.


Assuntos
Amilases/biossíntese , Bacillus cereus/química , Bacillus cereus/metabolismo , Meios de Cultura/química , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Carbono/metabolismo , Glicina/química , Concentração de Íons de Hidrogênio , Metais , Microbiologia do Solo , Amido , Temperatura
10.
Bioprocess Biosyst Eng ; 42(5): 807-815, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30707292

RESUMO

Co-polymerization of microbial polyesters, polyhydroxyalkanoates (PHAs), with synthetic polymers has become an established and promising tool in the recent past for improving the material and biological properties of the biopolyesters. Bacillus cereus RCL 02, a leaf endophytic bacterium of the oleaginous plant Ricinus communis L., has been reported to produce a significant amount of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] under batch cultivation. The present study demonstrates the synthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol [P(3HB-co-3HV)-PEG] co-polymer by the isolate RCL 02 in glucose, valeric acid, and PEG-200 supplemented mineral salts medium following dual-step cultivation. The identity of P(3HB-co-3HV)-PEG co-polymer so produced has been confirmed by X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR), and proton nuclear magnetic resonance (1H NMR) spectroscopic studies, and the purified co-polymer was found to be composed of 3.2 mol% ethylene glycol (EG) and 8.4 mol% 3HV along with 3HB. While the thermogravimetric analysis (TGA) revealed that P(3HB-co-3HV)-PEG films degraded at 269.32 °C, differential scanning calorimetry (DSC) recorded the melting peak of the co-polymer at 163.8 °C. This study emphasized to explore the endophytic Bacillus spp. for production of P(3HB-co-3HV)-PEG co-polymers with improved material properties which may find possible application for biomedical purposes.


Assuntos
Bacillus cereus/metabolismo , Poliésteres/metabolismo , Polietilenoglicóis/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poliésteres/química , Polietilenoglicóis/química , Poli-Hidroxialcanoatos/química
11.
Curr Microbiol ; 76(1): 78-85, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343326

RESUMO

Metallic selenides nanomaterials are widely used in many fields, especially for photothermal therapy and thermoelectric devices. However, the traditional chemogenic methods are energy-intensive and environmentally unfriendly. In this study, the first complete genome data of a metallic selenides producing bacterium Bacillus cereus CC-1 was reported. This strain can not only reduce selenite and selenate into elemental selenium nanoparticles (SeNPs), but also synthesize several metallic selenides nanoparticles when adding metal ions (Pb2+, Ag+ and Bi3+) and selenite simultaneously. The size of the genome is 5,308,319 bp with 36.07% G+C content. Several putative genes responsible for heavy metal resistance, salt resistance, and selenate reduction were found. This genome data provide fundamental information, which support the use of this strain for the production of biocompatible photothermal and thermoelectric nanomaterials under mild conditions.


Assuntos
Bacillus cereus/genética , Bacillus cereus/metabolismo , Genoma Bacteriano/genética , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Sedimentos Geológicos/microbiologia , Nanopartículas Metálicas , Oxirredução , Selênio/metabolismo , Sequenciamento Completo do Genoma
12.
Molecules ; 23(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404208

RESUMO

Microbial solubilization applies the natural ability of a microorganism to liberate phosphorus from unavailable structures. The main mechanism recognized to be responsible for the solubilization of phosphorus is the production of different types of organic acids. Three kinds of Bacillus species and three types of raw materials (poultry bones, fish bones, and ash) were tested for solubilization. The following parameters were compared for all discussed cases: pH, specific growth rate, solubilization factor, released phosphorus concentration, and total and individual concentration of organic acids. Utilization of ash brought about the highest specific and maximum specific growth rates. A decrease in pH was observed in most of the discussed cases with the exception of fish bones. At the same time, fish bones had the highest concentration of released P2O5 and the highest total concentration of produced organic acids (gluconic, lactic, acetic, succinic, and propionic) in all discussed cases. The tested Bacillus species produced the mentioned acids with the exception of B. megaterium, where propionic acid was not present. The lactic and acetic acids were those produced in the highest amount. The kind of raw materials and type of Bacillus species used in solubilization had a strong influence on the kind of organic acids that were detected in the broth culture and its total concentration, which had a direct influence on the amount of released phosphorus. The combination of Bacillus megaterium with the fish bones at 5 g/L is proposed as the pair that gives the highest concentration of released phosphorus (483 ± 5 mg/L).


Assuntos
Bacillus/metabolismo , Fósforo/metabolismo , Bacillus cereus/metabolismo , Bacillus megaterium/metabolismo , Bacillus subtilis/metabolismo , Solubilidade
13.
Int J Food Microbiol ; 283: 59-64, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30099996

RESUMO

Mashed potato powder as well as powdered infant formula (PIF) are frequently contaminated with Bacillus cereus sensu lato (B. cereus s.l.), mainly with its spores. These products have also been implicated in foodborne illnesses. Here, we characterized B. cereus s.l. isolates originating from powdered products based on sporulation assays, toxin gene profiling, and panC typing combined with a SplitsTree analysis. Furthermore, cytotoxicity assays with B. cytotoxicus isolates were performed. 78% of PIF tested positive for B. cereus s.l., whereas 92% of all mashed potato powders were positive. In total, 43 isolates were further characterized. The nhe and cytK2 genes were most frequently detected. Moreover, a cereulide-producer was detected from PIF. Most isolates were assigned to panC group III, but members of group II, IV, V, and VII could also be found. Nine B. cytotoxicus were isolated out of nine mashed potato powders. All panC group VII isolates were positive for cytK1. Cytotoxicity assays of these nine isolates revealed one highly cytotoxic strain, while all other isolates exhibited no detectable cytotoxicity, underpinning that cytotoxicity of a certain B. cereus group strain cannot be deduced from the sole presence or absence of toxin genes.


Assuntos
Bacillus cereus/isolamento & purificação , Contaminação de Alimentos/análise , Fórmulas Infantis/microbiologia , Solanum tuberosum/microbiologia , Bacillus cereus/classificação , Bacillus cereus/genética , Bacillus cereus/metabolismo , Depsipeptídeos/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Pós/química
14.
Environ Sci Pollut Res Int ; 25(26): 26351-26360, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29981021

RESUMO

A new strain SWH-15 was successfully isolated after initial electrokinetic remediation experiment using the same saline soil sampled from Shengli Oilfield, China. Four methods (morphological and biochemical characteristics, whole-cell fatty acid methyl esters (FAMEs) analysis, 16S rRNA sequence analysis and DNA G + C content and DNA-DNA hybridization analysis) were used to identify the taxonomic status of SWH-15 and confirmed that SWH-15 was a novel species of the Bacillus (B.) cereus group. Then, we assessed the degrading ability of the novel strain SWH-15 to crude oil through a microcosm experiment with four treatments, including control (CK), bioremediation using SWH-15 (Bio), electrokinetic remediation (EK), and combined bioremediation and electrokinetic remediation (Bio + EK). The results showed that the Bio + EK combined remediation treatment was more effective than the CK, Bio, and EK treatments in degrading crude oil contaminants. Bioaugmentation, by addition of the strain SWH-15 had synergistic effect with EK in Bio + EK treatment. Bacterial community analysis showed that electrokinetic remediation alone significantly altered the bacterial community of the saline soil. The addition of the strain SWH-15 alone had a weak effect on the bacterial community. However, the strain SWH-15 boosted the growth of other bacterial species in the metabolic network and weakened the impact of electrical field on the whole bacterial community structure in the Bio + EK treatment.


Assuntos
Bacillus cereus/isolamento & purificação , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bacillus cereus/genética , Bacillus cereus/metabolismo , Biodegradação Ambiental , China , Eletricidade , Recuperação e Remediação Ambiental , Ácidos Graxos/metabolismo , Campos de Petróleo e Gás , Poluição por Petróleo , Fenótipo , RNA Ribossômico 16S/genética , Tolerância ao Sal
15.
Pak J Pharm Sci ; 31(1(Suppl.)): 251-256, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29386151

RESUMO

Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 mg/ml of biosurfactants and thus considered as safe. They also showed very good antioxidant activity by ferric-reducing activity and DPPH scavenging activity at 2 mg/ml. Consequently, the study offers an insight for the exploration of new bioactive molecules from the soil. It was concluded that lipopeptide biosurfactants produced from native strains of B. cereus may be recommended as safe antimicrobial, emulsifier and antioxidant agent.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Bacillus cereus/metabolismo , Tensoativos/metabolismo , Animais , Anti-Infecciosos/metabolismo , Antioxidantes/metabolismo , Bacillus cereus/genética , Linhagem Celular , Sobrevivência Celular , Cricetinae , Avaliação Pré-Clínica de Medicamentos/métodos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Vírus da Doença de Newcastle/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Tensoativos/farmacologia
16.
Biomolecules ; 8(1)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438351

RESUMO

The biochemical potential of pathogenic bacteria may cause alteration in the neurophysiological environment; consequently, neuroendocrine and immune responses of the host are modulated by endogenously produced metabolic products of neuropathogenic bacteria. The present study was designed to detect the derived biogenic amines in spent culture media of Bacillus cereus (Bc), Clostridium tetani (Ct), Listeria monocytogenes (Lm), and Neisseria meningitidis (Nm). Overnight grown culture in different culture media i.e., Nutrient broth (NB), Luria basal broth (LB), Brain Heart Infusion broth (BHI), and human serum supplemented RPMI 1640 medium (RPMI) were used to prepare filter-sterilized, cell-free cultural broths (SCFBs) and subjected to high performance liquid chromatography with electrochemical detection (HPLC-EC) along with the control SCFBs. Comparative analysis of biogenic amines in neuropathogenic bacterial SCFBs with their respective control (SCFB) revealed the complete degradation of dopamine (DA) into its metabolic products by Bc, Ct, and Nm, whereas Lm showed negligible degradation of DA. A relatively high concentration of 5-hydroxyindol acetic acid (5HIAA) by Bc in NB and LB indicated the tryptophan metabolism by the serotonin (5HT) pathway. Our study suggests that microbial endocrinology could help unravel new perspectives to the progression of infectious diseases.


Assuntos
Bacillus cereus/metabolismo , Clostridium tetani/metabolismo , Dopamina/metabolismo , Listeria monocytogenes/metabolismo , Neisseria meningitidis/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo
17.
Braz. j. microbiol ; 48(4): 629-636, Oct.-Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-889175

RESUMO

ABSTRACT Polyhydroxyalkanoates (PHA) are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349), Klebsiella pneumoniae (KF270350), Bacillus subtilis (KF270351), Brevibacterium halotolerance (KF270352), Pseudomonas aeruginosa (KF270353), and Stenotrophomonas rhizoposid (KF270354) by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72 h in all cases. P. aeruginosa led to maximum PHA production after 72 h at 37 °C and 100 rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750 cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV) by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs.


Assuntos
Pseudomonas aeruginosa/metabolismo , Bacillus cereus/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Hidrocarbonetos/metabolismo , Resíduos/análise , Óleos de Plantas/metabolismo , Óleos de Plantas/química , Gasolina/análise , Biotransformação
18.
Mar Pollut Bull ; 125(1-2): 433-439, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28969907

RESUMO

Effective emulsification plays an important role in the treatment of marine oil spills. The negative effects of chemical surfactants have necessitated a search for alternative dispersant that are sustainable and environmentally-friendly. To identify alternate dispersants, oil-in-seawater emulsions stabilized by hydrocarbon-degrading bacteria were investigated. After individual immobilization and surface-modification, the hydrocarbon-degrading bacteria, Bacillus cereus S-1, was found to produce a stable oil-in-seawater Pickering emulsion, which was similar to particle emulsifiers. The individual immobilization and surface-modification process improved the surface hydrophobicity and wettability of the bacterial cells, which was responsible for their effective adsorption at the oil-water interface. Through effective emulsification, the biodegradation of oil was remarkably facilitated by these treated bacteria, because of the increased interfacial area. By combining the emulsification and biodegradation, the results of this reported work demonstrated a novel approach for developing environmentally-friendly bioremediation technology in the field of oil treatment.


Assuntos
Bacillus cereus/metabolismo , Células Imobilizadas/metabolismo , Hidrocarbonetos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Emulsões , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Petróleo/metabolismo , Poluição por Petróleo , Água do Mar/microbiologia , Poluentes Químicos da Água/química , Molhabilidade
19.
Water Sci Technol ; 76(1-2): 49-56, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708609

RESUMO

In this research removal of NH3-N, NO3-N and PO4-P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO3-N, 80.62% of NH3-N and 4.30% of PO4-P. With Bacillus cereus the results were 8.40% of NO3-N, 28.80% of NH3-N and 3.80% of PO4-P. The removals with Pseudomonas putida were 2.50% of NO3-N, 41.80 of NH3-N and 4.30% of PO4-P. The consortium of Chlorella vulgaris-Bacillus cereus-Pseudomonas putida removed 29.40% of NO3-N, 4.2% of NH3-N and 8.4% of PO4-P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.


Assuntos
Amônia/metabolismo , Bacillus cereus/metabolismo , Chlorella vulgaris/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Pseudomonas putida/metabolismo , Águas Residuárias/microbiologia , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa , México , Águas Residuárias/química , Poluentes Químicos da Água , Purificação da Água/instrumentação
20.
Braz J Microbiol ; 48(4): 629-636, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28629970

RESUMO

Polyhydroxyalkanoates (PHA) are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349), Klebsiella pneumoniae (KF270350), Bacillus subtilis (KF270351), Brevibacterium halotolerance (KF270352), Pseudomonas aeruginosa (KF270353), and Stenotrophomonas rhizoposid (KF270354) by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72h in all cases. P. aeruginosa led to maximum PHA production after 72h at 37°C and 100rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV) by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs.


Assuntos
Bacillus cereus/metabolismo , Hidrocarbonetos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas aeruginosa/metabolismo , Biotransformação , Gasolina/análise , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA