Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8519, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444666

RESUMO

A novel Bacillus licheniformis strain (DM-1) was isolated from a mature reservoir in Dagang oilfield of China. DM-1 showed unique properties to utilize petroleum hydrocarbons and agroindustrial by-product (molasses) for exopolysaccharide (EPS) production under oil recovery conditions. The DM-1 EPS was proven to be a proteoglycan with a molecular weight of 568 kDa. The EPS showed shear thinning properties and had high viscosities at dilute concentrations (<1%, w/v), high salinities, and elevated temperatures. Strain DM-1 could degrade long-chain n-alkanes up to C36. Viscosity reduction test have shown that the viscosity of the crude oil was reduced by 40% compared with that before DM-1 treatment. Sand pack flooding test results under simulated reservoir conditions have shown that the enhanced oil recovery efficiency was 19.2% after 7 days of in-situ bioaugmentation with B. licheniformis DM-1. The obtained results indicate that strain DM-1 is a promising candidate for in situ microbial enhanced oil recovery (MEOR).


Assuntos
Alcanos/metabolismo , Bacillus licheniformis/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Polissacarídeos Bacterianos/metabolismo , Bacillus licheniformis/isolamento & purificação
2.
Toxins (Basel) ; 12(3)2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183451

RESUMO

Deoxynivalenol (DON) is one of the most prevalent food- and feed-associated mycotoxins. It frequently contaminates agricultural commodities and poses serious threats to human and animal health and leads to tremendous economic losses globally. Much attention has been paid to using microorganisms to detoxify DON. In this study, a Bacillus licheniformis strain named YB9 with a strong ability to detoxify DON was isolated and characterized from a moldy soil sample. YB9 could degrade more than 82.67% of 1 mg/L DON within 48 h at 37 °C and showed strong survival and DON degradation rate at simulated gastric fluid. The effects of YB9 on mice with DON intragastrical administration were further investigated by biochemical and histopathological examination and the gut microbiota was analyzed by 16S rRNA Illumina sequencing technology. The results showed that DON increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine (Cr), decreased those of immunoglobulin G (IgG) and IgM in serum, and resulted in severe pathological damage of the liver, kidney, and spleen. By contrast, YB9 supplementation obviously inhibited or attenuated the damages caused by DON in mice. In addition, YB9 addition repaired the DON-induced dysbiosis of intestinal flora, characterized by recovering the balance of Firmicutes and Bacteroidetes to the normal level and decreasing the abundance of the potentially harmful bacterium Turicibacter and the excessive Lactobacillus caused by DON. Taken together, DON-degrading strain YB9 might be used as potential probiotic additive for improving food and feed safety and modulating the intestinal microbial flora of humans and animals.


Assuntos
Bacillus licheniformis/isolamento & purificação , Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Tricotecenos/toxicidade , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bacillus licheniformis/metabolismo , Biodegradação Ambiental , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Suplementos Nutricionais , Disbiose/sangue , Imunoglobulina G/sangue , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Microbiologia do Solo , Tricotecenos/análise
3.
World J Microbiol Biotechnol ; 34(8): 112, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980862

RESUMO

Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] (CIPC), an important phenyl carbamate herbicide, has been used as a plant growth regulator and potato sprout suppressant (Solanum tuberosum L) during long-term storage. A bacterium capable of utilizing the residual herbicide CIPC as a sole source of carbon and energy was isolated from herbicide-contaminated soil samples employing selective enrichment method. The isolated bacterial strain was identified as Bacillus licheniformis NKC-1 on the basis of its morphological, cultural, biochemical characteristics and also by phylogenetic analysis based on 16S rRNA gene sequences. The organism degraded CIPC through its initial hydrolysis by CIPC hydrolase enzyme to yield 3-chloroaniline (3-CA) as a major metabolic product. An inducible 3-CA dioxygenase not only catalyzes the incorporation of molecular oxygen but also removes the amino group by the deamination yielding a monochlorinated catechol. Further, degradation of 4-chlorocatechol proceeded via ortho- ring cleavage through the maleylacetate process. 3-Chloroaniline and 4-chlorocatechol are the intermediates in the CIPC degradation which suggested that dechlorination had occurred after the aromatic ring cleavage. The presence of these metabolites has been confirmed by using ultra-violet (UV), high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transmission-infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass (GC-MS) spectral analysis. Enzyme activities of CIPC hydrolase, 3-CA dioxygenase and chlorocatechol 1, 2-dioxygenase were detected in the cell-free-extract of the CIPC culture and are induced by cells of NKC-1 strain. These results demonstrate the biodegradation pathways of herbicide CIPC and promote the potential use of NKC-1 strain to bioremediate CIPC-contaminated environment with subsequent release of ammonia, chloride ions and carbon dioxide.


Assuntos
Bacillus licheniformis/metabolismo , Clorprofam/metabolismo , Compostos de Amônio/análise , Compostos de Anilina/metabolismo , Bacillus licheniformis/classificação , Bacillus licheniformis/genética , Bacillus licheniformis/isolamento & purificação , Biodegradação Ambiental , Catecóis/metabolismo , Cloretos/análise , Clorprofam/química , Dioxigenases , Herbicidas/metabolismo , Redes e Vias Metabólicas , Organofosfatos/análise , Fenilcarbamatos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Solanum tuberosum , Especificidade da Espécie
4.
Mar Pollut Bull ; 106(1-2): 301-7, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26994837

RESUMO

In this work, a hydrocarbon-degrading bacterium Y-1 isolated from petroleum contaminated soil in the Dagang Oilfield was investigated for its potential effect in biodegradation of crude oil. According to the analysis of 16S rRNA sequences, strain Y-1 was identified as Bacillus licheniformis. The growth parameters such as pH, temperature, and salinity were optimised and 60.2% degradation of crude oil removal was observed in 5days. The strain Y-1 showed strong tolerance to high salinity, alkalinity, and temperature. Emplastic produced by strain Y-1 at high temperatures could be applied as biosurfactant. Gas chromatography analysis demonstrated that the strain Y-1 efficiently degraded different alkanes from crude oil, and the emplastic produced by strain Y-1 promoted the degradation rates of long-chain alkanes when the temperature increased to 55°C. Therefore, strain Y-1 would play an important role in the area of crude oil contaminant bioremediation even in some extreme conditions.


Assuntos
Alcanos/análise , Bacillus licheniformis/isolamento & purificação , Petróleo/análise , Temperatura , Poluentes Químicos da Água/análise , Alcanos/metabolismo , Bacillus licheniformis/metabolismo , Biodegradação Ambiental , Modelos Teóricos , Campos de Petróleo e Gás , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA