Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.173
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560776

RESUMO

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Assuntos
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo
2.
Sci Rep ; 14(1): 8505, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605045

RESUMO

The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.


Assuntos
Ésteres , Microbiota , Animais , Bovinos , Feminino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Ésteres/metabolismo , Rúmen/microbiologia , Fermentação , Cabras , Dieta/veterinária , Fezes , Bactérias/metabolismo , Suplementos Nutricionais , Ração Animal/análise , Lactação/fisiologia
3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646749

RESUMO

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Assuntos
Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Cunninghamia/crescimento & desenvolvimento , China , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo
4.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580768

RESUMO

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Assuntos
Anti-Infecciosos , Bacillus , Antifúngicos/química , Bacillus/metabolismo , Fungos/metabolismo , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Extratos Vegetais/metabolismo , Endófitos
5.
Adv Appl Microbiol ; 126: 63-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637107

RESUMO

Selenium (Se) is an essential trace element present as selenocysteine (SeCys) in selenoproteins, which have an important role in thyroid metabolism and the redox system in humans. Se deficiency affects between 500 and 1000 million people worldwide. Increasing Se intake can prevent from bacterial and viral infections. Se deficiency has been associated with cancer, Alzheimer, Parkinson, decreased thyroid function, and male infertility. Se intake depends on the food consumed which is directly related to the amount of Se in the soil as well as on its availability. Se is unevenly distributed on the earth's crust, being scarce in some regions and in excess in others. The easiest way to counteract the symptoms of Se deficiency is to enhance the Se status of the human diet. Se salts are the most toxic form of Se, while Se amino acids and Se-nanoparticles (SeNPs) are the least toxic and most bio-available forms. Some bacteria transform Se salts into these Se species. Generally accepted as safe selenized microorganisms can be directly used in the manufacture of selenized fermented and/or probiotic foods. On the other hand, plant growth-promoting bacteria and/or the SeNPs produced by them can be used to promote plant growth and produce crops enriched with Se. In this chapter we discuss bacterial Se metabolism, the effect of Se on human health, the applications of SeNPs and Se-enriched bacteria, as well as their effect on food fortification. Different strategies to counteract Se deficiency by enriching foods using sustainable strategies and their possible implications for improving human health are discussed.


Assuntos
Nanopartículas , Compostos de Selênio , Selênio , Humanos , Selênio/química , Selênio/metabolismo , Sais , Bactérias/genética , Bactérias/metabolismo
6.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593666

RESUMO

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Assuntos
Arsênio , Carbono , Microbiologia do Solo , Poluentes do Solo , Arsênio/metabolismo , Arsênio/toxicidade , Carbono/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Fósforo/metabolismo , Solo/química
7.
BMC Plant Biol ; 24(1): 295, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632520

RESUMO

The extraction of bast fibres such as jute from plant stems involves the removal of pectin, hemicellulose, and other noncellulosic materials through a complex microbial community. A consortium of pectinolytic bacterial strains has been developed and commercialized to reduce the retting time and enhance fibre quality. However, there are currently no studies on jute that describe the structural changes and sequential microbial colonization and pectin loss that occur during microbe-assisted water retting. This study investigated the stages of microbial colonization, microbial interactions, and sequential degradation of pectic substances from jute bark under controlled and conventional water retting. The primary occurrence during water retting of bast fibres is the bacterially induced sequential breakdown of pectin surrounding the fibre bundles. The study also revealed that the pectin content of the jute stem significantly decreases during the retting process. These findings provide a strong foundation for improving microbial strains for improved pectinolysis with immense industrial significance, leading to a sustainable jute-based "green" economy.


Assuntos
Corchorus , Corchorus/metabolismo , Água/metabolismo , Pectinas/metabolismo , Bactérias/metabolismo
8.
Environ Pollut ; 349: 123951, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604305

RESUMO

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.


Assuntos
Metais Pesados , Microalgas , Fosfatos , Simbiose , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/metabolismo , Águas Residuárias/química , Fosfatos/farmacologia , Fosfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Zinco
9.
Food Funct ; 15(9): 4805-4817, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563411

RESUMO

Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.


Assuntos
Fezes , Fermentação , Microbioma Gastrointestinal , Xantofilas , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Xantofilas/metabolismo , Xantofilas/farmacologia , Fezes/microbiologia , Masculino , Adulto , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
10.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565016

RESUMO

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Membranas Artificiais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Dicloretos de Etileno/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
11.
Food Funct ; 15(8): 4365-4374, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38545932

RESUMO

Childhood malnutrition remains a serious global health concern, particularly in low-income nations like Uganda. This study investigated the impact of peanut supplementation on the compositions and functions of gut microbiome with nutritional improvement. School children aged 6-9 years from four rural communities were recruited, with half receiving roasted peanut snacks while the other half served as controls. Fecal samples were collected at the baseline (day 0), day 60, and day 90. Microbial DNA was extracted, and 16S rRNA sequencing was performed, followed by the measurement of SCFA concentration in fecal samples using UHPLC. Alpha and beta diversity analyses revealed significant differences between the control and supplemented groups after 90 days of supplementation. Leuconostoc lactis, Lactococcus lactis, Lactococcus garvieae, Eubacterium ventriosum, and Bacteroides thetaiotaomicron, associated with the production of beneficial metabolites, increased significantly in the supplemented group. Acetic acid concentration also increased significantly. Notably, pathogenic bacteria, including Clostridium perfringens and Leuconostoc mesenteroides, were decreased in the supplemented group. The study indicates the potential of peanut supplementation to modulate the gut metabolome, enrich beneficial bacteria, and inhibit pathogens, suggesting a novel approach to mitigating child malnutrition and improving health status.


Assuntos
Arachis , Bactérias , Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Humanos , Arachis/microbiologia , Uganda , Criança , Masculino , Feminino , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , RNA Ribossômico 16S/genética
12.
Sci Total Environ ; 927: 171642, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479518

RESUMO

Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.


Assuntos
Amônia , Archaea , Bactérias , Nitrogênio , Oryza , Oxirredução , Fósforo , Microbiologia do Solo , Solo , Archaea/metabolismo , China , Bactérias/metabolismo , Amônia/metabolismo , Solo/química , Animais , Peixes , Fertilizantes/análise , Agricultura/métodos
13.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521276

RESUMO

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Assuntos
Metagenoma , Petróleo , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Oceanos e Mares , Petróleo/metabolismo
14.
Water Res ; 254: 121430, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461607

RESUMO

Proper treatment of hypersaline and nutrient-rich food industry process water (FIPW) is challenging in conventional wastewater plants. Insufficient treatment leads to serious environmental hazards. However, bioremediation of FIPW with an indigenous microbial community can not only recover nutrients but generate biomass of diverse applications. In this study, monoculture of Halamphora coffeaeformis, together with synthetic bacteria isolated from a local wastewater plant, successfully recovered 91% of NH4+-N, 78% of total nitrogen, 95% of total phosphorus as well as 82% of total organic carbon from medium enriched with 10% FIPW. All identified organic acids and amino acids, except oxalic acid, were completely removed after 14 days treatment. A significantly higher biomass concentration (1.74 g L-1) was achieved after 14 days treatment in the medium with 10% FIPW than that in a nutrient-replete lab medium as control. The harvested biomass could be a potential feedstock for high-value biochemicals and fertilizer production, due to fucoxanthin accumulation (3 mg g-1) and a fantastic performance in P assimilation. Metagenomic analysis revealed that bacteria community in the algal system, dominated by Psychrobacter and Halomonas, also contributed to the biomass accumulation and uptake of nutrients. Transcriptomic analysis further disclosed that multiple pathways, involved in translation, folding, sorting and degradation as well as transport and catabolism, were depressed in H. coffeaeformis grown in FIPW-enriched medium, as compared to the control. Collectively, the proposed one-step strategy in this work offers an opportunity to achieve sustainable wastewater management and a way towards circular economy.


Assuntos
Diatomáceas , Microalgas , Microbiota , Águas Residuárias , Biodegradação Ambiental , Água/análise , Fósforo/análise , Bactérias/genética , Bactérias/metabolismo , Indústria Alimentícia , Nutrientes/análise , Biomassa , Microalgas/metabolismo , Nitrogênio/metabolismo
15.
Chemosphere ; 354: 141712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484991

RESUMO

The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.


Assuntos
Actinobacteria , Selênio , Ácido Selenioso/toxicidade , Selenito de Sódio/metabolismo , Selenito de Sódio/toxicidade , Actinobacteria/genética , Actinobacteria/metabolismo , Bactérias/metabolismo , Selênio/metabolismo , Oxirredução
16.
Sci Total Environ ; 922: 171279, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428597

RESUMO

Kuwaiti hypersaline soil samples were contaminated with 5 % (w/w) weathered Kuwaiti light crude oil and bioaugmented with autochthonous halophilic hydrocarbonoclastic archaeal and bacterial strains, two each, individually and as consortia. Residual oil contents were determined, and microbial communities were analyzed by culture-dependent and culture-independent approaches initially and seasonally for one year. After one year of the bioremediation process, the mean oil degradation rate was similar across all treated soils including the controlled unbioaugmented one. Oil hydrocarbons were drastically reduced in all soil samples with values ranging from 82.7 % to 93 %. During the bioremediation process, the number of culturable oil-degrading bacteria increased to a range of 142 to 344 CFUx104 g-1 after 12 months of bioaugmentation. Although culture-independent analysis showed a high proportion of inoculants initially, none could be cultured throughout the bioremediation procedure. Within a year, microbial communities changed continually, and 33 species of halotolerant/halophilic hydrocarbonoclastic bacteria were isolated and identified belonged mainly to the three major bacterial phyla Actinobacteria, Proteobacteria, and Firmicutes. The archaeal phylum Halobacterota represented <1 % of the microbial community's relative abundance, which explains why none of its members were cultured. Improving the biodegradability of an already balanced environment by autochthonous bioaugmentation is more involved than just adding the proper oil degraders. This study emphasizes the possibility of a relatively large resistant population, a greater diversity of oil-degrading microorganisms, and the highly selective impacts of oil contamination on hypersaline soil bacterial communities.


Assuntos
Petróleo , Poluentes do Solo , Archaea/metabolismo , Biodegradação Ambiental , Solo , Microbiologia do Solo , Óleos , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/metabolismo , Poluentes do Solo/análise
17.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
18.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
19.
Environ Sci Technol ; 58(6): 2830-2846, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301118

RESUMO

Biological sulfate reduction (BSR) represents a promising strategy for bioremediation of sulfate-rich waste streams, yet the impact of metabolic interactions on performance is largely unexplored. Here, genome-resolved metagenomics was used to characterize 17 microbial communities in reactors treating synthetic sulfate-contaminated solutions. Reactors were supplemented with lactate or acetate and a small amount of fermentable substrate. Of the 163 genomes representing all the abundant bacteria, 130 encode 321 NiFe and FeFe hydrogenases and all genomes of the 22 sulfate-reducing microorganisms (SRM) encode genes for H2 uptake. We observed lactate oxidation solely in the first packed bed reactor zone, with propionate and acetate oxidation in the middle and predominantly acetate oxidation in the effluent zone. The energetics of these reactions are very different, yet sulfate reduction kinetics were unaffected by the type of electron donor available. We hypothesize that the comparable rates, despite the typically slow growth of SRM on acetate, are a result of the consumption of H2 generated by fermentation. This is supported by the sustained performance of a predominantly acetate-supplemented stirred tank reactor dominated by diverse fermentative bacteria encoding FeFe hydrogenase genes and SRM capable of acetate and hydrogen consumption and CO2 assimilation. Thus, addition of fermentable substrates to stimulate syntrophic relationships may improve the performance of BSR reactors supplemented with inexpensive acetate.


Assuntos
Reatores Biológicos , Sulfatos , Fermentação , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Acetatos/metabolismo , Lactatos/metabolismo
20.
Mol Biol Rep ; 51(1): 262, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302671

RESUMO

BACKGROUND: The gut microbiome of honey bees significantly influences vital traits and metabolic processes, including digestion, detoxification, nutrient provision, development, and immunity. However, there is a limited information is available on the gut bacterial diversity of western honey bee populations in India. This study addresses the critical knowledge gap and outcome of which would benefit the beekeepers in India. METHODS AND RESULTS: This study investigates the gut bacterial diversity in forager and hive bees of Indian Apis mellifera, employing both culture-based and culture-independent methods. In the culturable study, a distinct difference in gut bacterial alpha and beta diversity between forager and hive bees emerges. Firmicutes, Proteobacteria, and Actinobacteria dominate, with hive bees exhibiting a Firmicutes-rich gut (65%), while foragers showcase a higher proportion of Proteobacteria (37%). Lactobacillus in the hive bee foregut aligns with the findings by other researchers. Bacterial amplicon sequencing analysisreveals a more intricate bacterial composition with 18 identified phyla, expanding our understanding compared to culturable methods. Hive bees exhibit higher community richness and diversity, likely due to diverse diets and increased social interactions. The core microbiota includes Snodgrassella alvi, Gilliamella apicola, and Bombilactobacillus mellis and Lactobacillus helsingborgensis, crucial for digestion, metabolism, and pathogen resistance. The study emphasises bacteria's role in pollen and nectar digestion, with specific groups like Lactobacillus and Bifidobobacterium spp. associated with carbohydrate metabolism and polysaccharide breakdown. These microbes aid in starch and sucrose digestion, releasing beneficial short-chain fatty acids. CONCLUSION: This research highlights the intricate relationship between honey bees and their gut microbiota, showcasing how the diverse and complex microbiome helps bees overcome dietary challenges and enhances overall host health. Understanding these interactions contributes to bee ecology knowledge and has implications for honey bee health management, emphasising the need for further exploration and conservation efforts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Urticária , Abelhas , Animais , Bactérias/genética , Bactérias/metabolismo , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA