Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395290

RESUMO

Polysaccharides from Pumpkin (Cucurbita moschata Duchesne) (PPs) have many pharmacological activities, including anti-oxidant, immune, and intestinal microbiota regulation. These activities have provided some reminders of its potential therapeutic effect on ulcerative colitis (UC), but this has not yet been confirmed. This study preliminarily confirmed its significant anti-UC activity superior to Salicylazosulfapyridine. The average molecular weight of PPs was 3.10 × 105 Da, and PPs mainly comprised Mannose, Rhamnose, Galacturonic acid, Galactosamine, Glucose, and Xylose with molar ratios of 1.58:3.51:34.54:1.00:3.25:3.02. PPs (50, 100 mg/kg) could significantly resist dextran sodium sulfate induced UC on C57BL/6 mice by improving gut microbiota dysbiosis, such as the changes of relative abundance of Bacteroides, Culturomica, Mucispirillum, Escherichia-Shigella, Alistipes and Helicobacter. PPs also reverse the abnormal inflammatory reaction, including abnormal level changes of TNF-α, IFN-γ, IL-1ß, IL-4, IL-6, IL-10, and IL-18. Metabolomic profiling showed that PPs supplementation resulted in the participation of PPAR and MAPK pathways, as well as the increase of 5-hydroxyindole acetic acid (5-HIAA) level. 5-HIAA also exhibited individual and synergistic anti-UC activities in vivo. Furthermore, combination of PPs and 5-HIAA could also elevate the levels of PPARγ in nuclear and inhibit MAPK/NF-ĸB pathway in the colon. This study revealed that PPs and endogenous metabolite 5-HIAA might be developed to treat UC.


Assuntos
Colite Ulcerativa , Colite , Cucurbita , Microbioma Gastrointestinal , Camundongos , Animais , Camundongos Endogâmicos C57BL , NF-kappa B , Ácido Hidroxi-Indolacético , PPAR gama , Colite/induzido quimicamente , Colite/tratamento farmacológico , Bacteroidetes , Suplementos Nutricionais , Sulfato de Dextrana , Modelos Animais de Doenças , Colo
2.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
3.
Food Funct ; 15(1): 338-354, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38088096

RESUMO

Both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) play pivotal roles in maintaining gut microbiota homeostasis; whether the effects of the different ratios of IDF and SDF are consistent remains unclear. Consequently, we selected SDFs and IDFs from six representative foods (apple, celery, kale, black fungus, oats, and soybeans) and formulated nine dietary fiber recipes composed of IDF and SDF with a ratio from 1 : 9 to 9 : 1 (NDFR) to compare their impact on microbial effects with healthy mice. We discovered that NDFR treatment decreased the abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes at the phylum level. The α diversity and relative richness of Parabacteroides and Prevotella at the genus level showed an upward trend along with the ratio of IDF increasing, while the relative abundance of Akkermansia at the genus level and the production of acetic acid and propionic acid exhibited an increased trend along with the ratio of SDF increasing. The relative abundance of Parabacteroides and Prevotella in the I9S1DF group (the ratio of IDF and SDF was 9 : 1) was 1.72 times and 5.92 times higher than that in the I1S9DF group (the ratio of IDF and SDF was 1 : 9), respectively. The relative abundance of Akkermansia in the I1S9DF group was 17.18 times higher than that in the I9S1DF group. Moreover, a high ratio of SDF (SDF reaches 60% or more) enriched the glycerophospholipid metabolism pathway; however, a high ratio of IDF (IDF reaches 80% or more) regulated the tricarboxylic acid cycle. These findings are helpful in the development of dietary fiber supplements based on gut microbiota and metabolites.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Fibras na Dieta/análise , Suplementos Nutricionais , Carboidratos/farmacologia , Verduras , Bacteroidetes
4.
Curr Microbiol ; 81(1): 22, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017305

RESUMO

Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 â„ƒ in 3% w/v crude oil), A (25 ± 2 â„ƒ in 1% w/v crude oil), H (25 ± 2 â„ƒ in 3% w/v crude oil), and X (45 ± 2 â„ƒ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.


Assuntos
Consórcios Microbianos , Petróleo , Temperatura , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Consórcios Microbianos/genética , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Bacteroidetes/genética
5.
BMC Microbiol ; 23(1): 290, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833633

RESUMO

BACKGROUND: Endophytic bacteria provide nutrients and stimulate systemic resistance during seed germination and plant growth and development, and their functional properties in combating various stresses make them a powerful tool in green agricultural production. In this paper we explored the function of the endophyte community in buckwheat seeds in order to provide a theoretical basis for the application and scientific research of endophytes in buckwheat cultivation. We used pulsed electric field (PEF) technology to treat buckwheat seeds, monitored the effect of high-voltage pulse treatment on buckwheat seed germination, and analyzed the diversity of endophytic bacteria in buckwheat seeds using the amplicon sequencing method. RESULTS: PEF treatment promoted root development during buckwheat seed germination. A total of 350 Operational taxonomic units (OTUs) that were assigned into 103 genera were obtained from control and treatment groups using 16SrRNA amplicon sequencing technology. Additionally, PEF treatment also caused a significant decrease in the abundance of Actinobacteria, Proteobacteria, and Bacteroidetes. The abundance of 28 genera changed significantly as well: 11 genera were more abundant, and 17 were less abundant. The number of associated network edges was reduced from 980 to 117, the number of positive correlations decreased by 89.1%, and the number of negative correlations decreased by 86.6%. CONCLUSION: PEF treatment promoted early root development in buckwheat and was able to alter the seed endophytic bacterial community. This study thus makes a significant contribution to the field of endophyte research and to the application of PEF technology in plant cultivation.


Assuntos
Fagopyrum , Bactérias/genética , Sementes/microbiologia , Raízes de Plantas/microbiologia , Bacteroidetes , Endófitos/genética
6.
Food Funct ; 14(18): 8487-8503, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655471

RESUMO

Type 2 diabetes mellitus (T2DM) is typically accompanied by sudden weight loss, dyslipidemia-related indicators, decreased insulin sensitivity, and altered gut microbial communities. Fagopyrum tataricum possesses many biological activities, such as antioxidant, hypolipidemic, and hypotensive activities. However, only a few studies have attempted to elucidate the regulatory effects of F. tataricum ethanol extract (FTE) on intestinal microbial communities and its potential relationships with T2DM. In this study, we established a T2DM mouse model and investigated the regulatory effects of FTE on hyperglycemia symptoms and intestinal microbial communities. FTE intervention significantly improved the levels of fasting blood glucose, the area under the curve of oral glucose tolerance test (OGTT), and glycosylated serum protein, as well as pancreas islet function correlation index. In addition, FTE effectively improved hepatic and cecum injuries and insulin secretion due to T2DM. It was also revealed that the potential hypoglycemic mechanism of FTE was involved in the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). Furthermore, compared with the Model group, the FTE-H intervention exhibited a significantly decreased ratio of Firmicutes to Bacteroidetes at the phylum level, reduced relative abundance of pernicious bacteria at the genus level, such as Desulfovibrio, Oscillibacter, Blautia, Parabacteroides, and Erysipelatoclostridium, and ameliorated inflammatory response and insulin resistance. Moreover, the correlation between gut microbiota and hypoglycemic indicators was predicted. The results showed that Lachnoclostridium, Lactobacillus, Oscillibacter, Bilophila, and Roseburia have the potential to be used as bacterial markers for T2DM. In conclusion, our research showed that FTE alleviates hyperglycemia symptoms by regulating the expression of AKT-1 and GLUT-2, as well as intestinal microbial communities in T2DM mice.


Assuntos
Diabetes Mellitus Tipo 2 , Fagopyrum , Microbioma Gastrointestinal , Hiperglicemia , Lactobacillales , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes , Firmicutes , Bacteroidetes , Clostridiales , Etanol , Extratos Vegetais
7.
Biosci Rep ; 43(9)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671923

RESUMO

Iron deficiency anemia (IDA) is a leading global health concern affecting approximately 30% of the population. Treatment for IDA consists of replenishment of iron stores, either by oral or intravenous (IV) supplementation. There is a complex bidirectional interplay between the gut microbiota, the host's iron status, and dietary iron availability. Dietary iron deficiency and supplementation can influence the gut microbiome; however, the effect of IV iron on the gut microbiome is unknown. We studied how commonly used IV iron preparations, ferric carboxymaltose (FCM) and ferric derisomaltose (FDI), affected the gut microbiome in female iron-deficient anemic mice. At the phylum level, vehicle-treated mice showed an expansion in Verrucomicrobia, mostly because of the increased abundance of Akkermansia muciniphila, along with contraction in Firmicutes, resulting in a lower Firmicutes/Bacteroidetes ratio (indicator of dysbiosis). Treatment with either FCM or FDI restored the microbiome such that Firmicutes and Bacteroidetes were the dominant phyla. Interestingly, the phyla Proteobacteria and several members of Bacteroidetes (e.g., Alistipes) were expanded in mice treated with FCM compared with those treated with FDI. In contrast, several Clostridia class members were expanded in mice treated with FDI compared with FCM (e.g., Dorea spp., Eubacterium). Our data demonstrate that IV iron increases gut microbiome diversity independently of the iron preparation used; however, differences exist between FCM and FDI treatments. In conclusion, replenishing iron stores with IV iron preparations in clinical conditions, such as inflammatory bowel disease or chronic kidney disease, could affect gut microbiome composition and consequently contribute to an altered disease outcome.


Assuntos
Microbioma Gastrointestinal , Ferro , Feminino , Animais , Camundongos , Dissacarídeos , Ferro da Dieta , Bacteroidetes , Firmicutes
8.
Sci Total Environ ; 905: 167140, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722424

RESUMO

Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.


Assuntos
Elymus , Microbiota , Poluentes do Solo , Plantas Tolerantes a Sal/metabolismo , Substâncias Húmicas/análise , Óxido de Alumínio/química , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Bacteroidetes
9.
Neoplasia ; 43: 100928, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37579688

RESUMO

We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.


Assuntos
Autofagia , Bacteroidetes , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Macrófagos , Neoplasias de Próstata Resistentes à Castração , Ruminococcus , Veillonellaceae , Ácidos Graxos Voláteis/metabolismo , Progressão da Doença , Macrófagos/patologia , Polaridade Celular , Ruminococcus/metabolismo , Neoplasias de Próstata Resistentes à Castração/microbiologia , Neoplasias de Próstata Resistentes à Castração/patologia , Camundongos Transgênicos , Bacteroidetes/metabolismo , Veillonellaceae/metabolismo , Transplante de Microbiota Fecal , Humanos , Masculino , Animais , Camundongos
10.
Microbiome ; 11(1): 175, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550707

RESUMO

BACKGROUND: Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS: Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS: Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.


Assuntos
Bacteroidetes , Ecossistema , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polissacarídeos/metabolismo , Pectinas/metabolismo
11.
Food Funct ; 14(15): 7040-7052, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37449470

RESUMO

Iron deficiency anemia (IDA) is a serious threat to the health of humans around the world. Tegillarca granosa (T. granosa) is considered as an excellent source of iron due to its abundant iron-binding protein hemoglobin. This study aimed to investigate the effects of hemoglobin from T. granosa on the gut microbiota and iron bioavailability in IDA mice. Compared to normal mice, IDA mice showed reduced microbiota diversity and altered relative abundance (reduced Muribaculaceae and increased Bacteroides). After 4 weeks of administration, hemoglobin restored the dysbiosis of the intestinal microbiota induced by IDA and decreased the Firmicutes/Bacteroidota ratio and the abundance of Proteobacteria. Analysis of the hemoglobin regeneration efficiency of mice treated with hemoglobin confirmed that hemoglobin exhibited high iron bioavailability, particularly at low-dose administration, suggesting that a small amount of hemoglobin from T. granosa markedly elevated the blood hemoglobin level in mice. These findings suggested that IDA could be alleviated by administration of hemoglobin with excellent iron bioavailability, and its therapeutic mechanism may be partially attributed to the regulation of the intestinal microbiota composition and relative abundance. These results indicated that T. granosa hemoglobin may be a promising iron supplement to treat IDA and promote the utilization of aquatic-derived proteins.


Assuntos
Anemia Ferropriva , Arcidae , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Anemia Ferropriva/tratamento farmacológico , Ferro/metabolismo , Hemoglobinas/metabolismo , Bacteroidetes/metabolismo
12.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499390

RESUMO

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Esterco/análise , Genes Bacterianos , Antibacterianos/farmacologia , Quimiotaxia/genética , Selenito de Sódio/farmacologia , Galinhas/genética , Bactérias , Resistência Microbiana a Medicamentos/genética , Bacteroidetes , Firmicutes
13.
Ecotoxicol Environ Saf ; 261: 115099, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285678

RESUMO

This study aimed to investigate whether dietary fiber pectin can alleviate PM2.5-induced pulmonary inflammation and the potential mechanism. PM2.5 samples were collected from a nursery pig house. The mice were divided into three groups: the control group, PM2.5 group and PM2.5 + pectin group. The mice in the PM2.5 group were intratracheally instilled with PM2.5 suspension twice a week for four consecutive weeks, and those in the PM2.5 + pectin group were subject to the same PM2.5 exposure, but fed with a basal diet supplemented with 5% pectin. The results showed that body weight and feed intake were not different among the treatments (p > 0.05). However, supplementation with pectin relieved PM2.5-induced pulmonary inflammation, presenting as slightly restored lung morphology, decreased mRNA expression levels of IL-1ß, IL-6 and IL-17 in the lung, decreased MPO content in bronchoalveolar lavage fluid (BLAF), and even decreased protein levels of IL-1ß and IL-6 in the serum (p < 0.05). Dietary pectin altered the composition of the intestinal microbiota, increasing the relative abundance of Bacteroidetes and decreasing the ratio of Firmicutes/Bacteroidetes. At the genus level, short-chain fatty acid (SCFA)-producing bacteria, such as Bacteroides, Anaerotruncus, Prevotella 2, Parabacteroides, Ruminococcus 2 and Butyricimonas, were enriched in the PM2.5 +pectin group. Accordingly, dietary pectin increased the concentrations of SCFAs, including acetate, propionate, butyrate and valerate, in mice. In conclusion, dietary fermentable fiber pectin can relieve PM2.5-induced pulmonary inflammation via alteration of intestinal microbiota composition and SCFA production. This study provides a new insight into reducing the health risk associated with PM2.5 exposure.


Assuntos
Microbioma Gastrointestinal , Suínos , Camundongos , Animais , Pectinas/farmacologia , Pectinas/metabolismo , Interleucina-6/genética , Fibras na Dieta/farmacologia , Ácidos Graxos Voláteis , Bacteroidetes/metabolismo , Pulmão/metabolismo , Material Particulado/toxicidade
14.
Gut Microbes ; 15(1): 2221429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287399

RESUMO

Observational studies suggest a link between vitamin D and the composition of the gut microbiome, but there is little evidence from randomized controlled trials of vitamin D supplementation. We analyzed data from the D-Health Trial, a randomized, double-blind, placebo-controlled trial. We recruited 21,315 Australians aged 60-84 y and randomized them to 60,000 IU of vitamin D3 or placebo monthly for 5 y. Stool samples were collected from a sample of 835 participants (417 in the placebo and 418 in the vitamin D group) approximately 5 y after randomization. We characterized the gut microbiome using 16S rRNA gene sequencing. We used linear regression to compare alpha diversity indices (i.e. Shannon index (primary outcome), richness, inverse Simpson index), and the ratio of Firmicutes to Bacteroidetes between the two groups. We analyzed between-sample (beta) diversity (i.e. Bray Curtis distance and UniFrac index) using principal coordinate analysis and used PERMANOVA to test for significant clustering according to randomization group. We also assessed the difference in the abundance of the 20 most abundant genera between the two groups using negative binomial regression model with adjustment for multiple testing. Approximately half the participants included in this analysis were women (mean age 69.4 y). Vitamin D supplementation did not alter the Shannon diversity index (mean 3.51 versus 3.52 in the placebo and vitamin D groups, respectively, p = 0.50). Similarly, there was little difference between the groups for other alpha diversity indices, the abundance of different genera, and the Firmicutes-to-Bacteroidetes ratio. We did not observe clustering of bacterial communities according to randomization group. In conlusion, monthly doses of 60,000 IU of vitamin D supplementation for 5 y did not alter the composition of the gut microbiome in older Australians.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Vitamina D , Idoso , Feminino , Humanos , Masculino , Austrália , Bacteroidetes , Método Duplo-Cego , Firmicutes , RNA Ribossômico 16S , Idoso de 80 Anos ou mais
15.
Food Res Int ; 170: 112968, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316011

RESUMO

In this study, the presence of phenolic compounds derived from four Solanaceae fruits (tomato, pepino, tamarillo, and goldenberry) during gastrointestinal digestion and the effect of these compounds on human gut microbiota was investigated. The results indicated that the total phenolic content of all Solanaceae fruits were increased during digestion. Furthermore, the targeted metabolic analysis identified 296 compounds, of which 71 were changed after gastrointestinal digestion in all Solanaceae fruits. Among these changed phenolic compounds, 51.3% phenolic acids and 91% flavonoids presented higher bioaccessibility in pepino and tamarillo, respectively. Moreover, higher levels of glycoside-formed phenolic acids, including dihydroferulic acid glucoside and coumaric acid glucoside, were found in tomato fruits. In addition, tachioside showed the highest bioaccessibility in goldenberry fruits. The intake of Solanaceae fruits during the in vitro fermentation decreased the Firmicutes/Bacteroidetes ratio (F/B) compared with the control (∼15-fold change on average), and goldenberry fruits showed the best effect (F/B = 2.1). Furthermore, tamarillo significantly promoted the growth of Bifidobacterium and short-chain fatty acids production. Overall, this study revealed that Solanaceae fruits had different phenolic compound profiles and health-promoting effects on the gut microbiota. It also provided relevant information to improve the consumption of Solanaceae fruits, mainly tamarillo and goldenberry fruits, due to their gut health-promoting properties, as functional foods.


Assuntos
Physalis , Solanum lycopersicum , Solanum , Humanos , Frutas , Fenóis , Bacteroidetes , Firmicutes
16.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375355

RESUMO

In this study, soluble dietary fibers (SDFs) were extracted from rape bee pollen using four methods including acid extraction (AC), alkali extraction (AL), cellulase extraction (CL) and complex enzyme extraction (CE). The effects of different extraction methods on the structure of SDFs and in vitro fermentation characteristics were further investigated. The results showed that the four extraction methods significantly affected the monosaccharide composition molar ratio, molecular weight, surface microstructure and phenolic compounds content, but showed little effect on the typical functional groups and crystal structure. In addition, all SDFs decreased the Firmicutes/Bacteroidota ratio, promoted the growth of beneficial bacteria such as Bacteroides, Parabacteroides and Phascolarctobacterium, inhibited the growth of pathogenic bacteria such as Escherichia-Shigella, and increased the total short-chain fatty acids (SCFAs) concentrations by 1.63-2.45 times, suggesting that the bee pollen SDFs had a positive regulation on gut microbiota. Notably, the SDF obtained by CE exhibited the largest molecular weight, a relatively loose structure, higher extraction yield and phenolic compounds content and the highest SCFA concentration. Overall, our results indicated that CE was an appropriate extraction method of high-quality bee pollen SDF.


Assuntos
Bactérias , Ácidos Graxos Voláteis , Animais , Abelhas , Fermentação , Ácidos Graxos Voláteis/análise , Fenóis/química , Pólen/química , Bacteroidetes , Fibras na Dieta/análise
17.
Poult Sci ; 102(8): 102825, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356297

RESUMO

A total of 480 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 6 replicates of 20 chicks per replicate. A basal diet was administered to the control group (CON), whereas CML350, CML500, and CML1000 groups were fed with basal diet supplemented with 350, 500, and 1,000 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex, respectively. However, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex improved weight gain (P < 0.01), enhanced intestinal morphology, increased serum total protein and albumin content, and total antioxidant capacity (P < 0.01), and significantly increased the Chao1 and Ace indices (P < 0.01), indicating an increase in the richness of the gut microbiota. At the phylum level, CML500 group reduced the abundance of Fusobacteriota at 21 d and Proteobacteria at 42 d (P < 0.01). At the genus level, CML500 group increased the abundance of Faecalibacterium and Alistipes at 42 d (P < 0.01) and decreased the abundance of Escherichia-Shigella (P < 0.01). At the species level, CML500 group reduced the abundance of Escherichia coli at 42 d (P < 0.01) and increased the abundance of Alistipes_sp_CHKCI003 at 42 d (P < 0.01). According to these results, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex in feed can improve the growth performance, intestinal morphology, and gut microbiota of yellow-feathered broilers.


Assuntos
Microbioma Gastrointestinal , Masculino , Animais , Galinhas , Monoglicerídeos , Compostos Orgânicos , Bacteroidetes , Suplementos Nutricionais , Escherichia coli , Ração Animal , Dieta/veterinária
18.
Huan Jing Ke Xue ; 44(4): 2325-2337, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040981

RESUMO

The improvement of saline soil is an important issue that cannot be ignored in the farmland soil environment. The change in soil salinity will inevitably affect the soil bacterial community. This experiment was based on moderately saline soil in the Hetao Irrigation Area, conducted by applying phosphogypsum (LSG), interplanting Suaeda salsa with Lycium barbarum (JP) and applying phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP),and the local unimproved soil of a L. barbarum orchard was used as the control (CK), to explore the effects of different improvement methods on soil moisture, salinity, nutrients, and bacterial community structure diversity during the growth period of L. barbarum. The results showed that compared with that under CK, the LSG+JP treatment significantly decreased the soil EC value and pH value from the flowering stage to the deciduous stage (P<0.05), with an average decrease of 39.96% and 7.25%, respectively; the LSG+JP treatment significantly increased soil organic matter (OM) and available phosphorus (AP) content during the whole growth period (P<0.05), with an average annual increase of 81.85% and 203.50%, respectively. The total nitrogen (TN) content was significantly increased in the flowering and deciduous stages (P<0.05), with an annual average increase of 48.91%. The Shannon index of LSG+JP in the early stage of improvement was increased by 3.31% and 6.54% compared with that of CK, and the Chao1 index was increased by 24.95% and 43.26% compared with that of CK, respectively. The dominant bacteria in the soil were Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria, and the dominant genus was Sphingomonas. Compared with that in CK, the relative abundance of Proteobacteria in the improved treatment increased by 0.50%-16.27% from the flowering stage to the deciduous stage, and the relative abundance of Actinobacteria in the improved treatment increased by 1.91%-4.98% compared with that in CK in the flowering and full-fruit stages. Redundancy analysis (RDA) results showed that pH, water content (WT), and AP were important factors affecting bacterial community composition, and the correlation heatmap showed that Proteobacteria, Bacteroidetes, and EC values were significantly negatively correlated (P<0.001); Actinobacteria and Nitrospirillum were significantly negatively correlated with EC values (P<0.01). In conclusion, the application of phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP) could significantly reduce soil salinity, increase nutrients, and improve the diversity of soil bacterial community structure, which is beneficial to the long-term improvement of saline soil in the Hetao Irrigation Area and the maintenance of soil ecological health.


Assuntos
Chenopodiaceae , Solo , Solo/química , Fósforo , Sulfato de Cálcio , Cloreto de Sódio , Bactérias , Proteobactérias , Bacteroidetes
19.
Food Funct ; 14(10): 4662-4680, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37102591

RESUMO

Obesity is a serious health problem, and it is important to discover natural active ingredients for alleviating it. In this study, we investigated the effect of phenolamide extract (PAE) from apricot bee pollen on obese mice fed a high-fat diet (HFD). The main compounds in PAE were identified by HPLC-ESI-QTOF-MS/MS, and HFD-fed mice were treated with PAE for 12 weeks. The results demonstrated that the content of phenolamides in PAE was 87.75 ± 5.37%, with tri-p-coumaroyl spermidine as the dominant compound. PAE intervention in HFD-fed mice effectively reduced weight gain and lipid accumulation in the liver and epididymal fat, increased glucose tolerance, reduced insulin resistance and improved lipid metabolism. In terms of the gut microbiota, PAE could reverse the increase in the Firmicutes/Bacteroidetes ratio in HFD-fed mice. In addition, PAE could increase beneficial bacteria such as Muribaculaceae and Parabacteroides, and reduce harmful bacteria such as Peptostreptococcaceae and Romboutsia. Metabolomic analysis revealed that PAE could regulate the levels of metabolites, including bile acids, phosphatidyl choline (PC), lysophosphatidylcholine (lysoPC), lysophosphatidylethanolamine (lysoPE) and tyrosine. This is the first study finding that PAE can regulate glucolipid metabolism and modulate the gut microbiota and metabolites in HFD-induced obese mice, and the results indicate that PAE can be used as a functional dietary supplement to alleviate HFD-induced obesity.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Prunus armeniaca , Abelhas , Animais , Camundongos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Espectrometria de Massas em Tandem , Obesidade/metabolismo , Bacteroidetes , Pólen , Camundongos Endogâmicos C57BL
20.
Sci Rep ; 13(1): 3691, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878925

RESUMO

This study investigates the effects of soybean meal fermented by Enterococcus faecium as a replacement for soybean meal on growth performance, apparent total tract digestibility, blood profile and gut microbiota of weaned pigs. Eighty piglets (weaned at 21 days) [(Landrace × Yorkshire) × Duroc] with average body weight of 6.52 ± 0.59 kg) were selected and assigned to 4 treatments/4 replicate pens (3 barrows and 2 gilts). The four diets (SBM, 3, 6 and 9% FSBM) were formulated using fermented soybean meal to replace 0, 3, 6 and 9% of soybean meal, respectively. The trial lasted for 42 days phase 1, 2 and 3. Result showed that supplemental FSBM increased (P < 0.05) the body weight gain (BWG) of piglets at day 7, 21 and 42 and ADG at days 1-7, 8-21, 22-42 and 1-42, and ADFI at days 8-21, 22-42 and 1-42 and G: F at days 1-7, 8-21 and 1-42, and crude protein, dry matter, and gross energy digestibility at day 42, and lowered (P < 0.05) diarrhea at days 1-21 and 22-42. The concentration of glucose levels, WBC, RBC, and lymphocytes were increased while, concentration of BUN level in the serum was lowered in the FSBM treatment compared to the SBM group (P < 0.05). Microbiota sequencing found that FSBM supplementation increased the microbial Shannon, Simpsons and Chao indexs, (P < 0.05) and the abundances of the phylum Firmicutes, and genera prevotella, Lactobacillus, Lachnospiraceae and Lachnoclostridium (P < 0.05), lower in the abundances of the phylum bacteroidetes, Proteobacteria, genera Escherichia-Shigella, Clostridium sensu stricto1, Bacteroides and Parabacteroides (P < 0.05). Overall, FSBM replacing SBM improved the growth performance, apparent total tract digestibility, and blood profiles; perhaps via altering the faecal microbiota and its metabolites in weaned pigs. The present study provides theoretical support for applying FSBM at 6-9% to promote immune characteristics and regulate intestinal health in weaning piglets.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Animais , Feminino , Bacteroidetes , Peso Corporal , Clostridiales , Suplementos Nutricionais , Suínos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA