Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phytother Res ; 36(3): 1386-1401, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35133045

RESUMO

As one of the major diabetic microvascular complications, diabetic retinopathy (DR) is mainly initiated by the blood-retinal barrier (BRB) dysfunction. Chlorogenic acid (CGA) is a natural polyphenolic compound in Lonicerae Japonicae Flos, which traditionally has the beneficial function for eyes and is commonly included in many anti-diabetic formulas. In this study, the potential protective mechanism of CGA against DR was investigated. Streptozotocin (STZ) was used to induce diabetes in mice. CGA attenuated BRB dysfunction and reversed endothelial-mesenchymal transition (EndoMT) and epithelial-mesenchymal transition (EMT) in retinas in vivo. CGA inhibited microglia activation and reduced tumor necrosis factor (TNF)α release both in vivo and in vitro. CGA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) activation and prevented EndoMT/EMT in TNFα-treated human retinal endothelial cells (HRECs) or retinal pigment epithelial APRE19 cells. CGA alleviated endothelial/epithelial barrier oxidative injury in HRECs or APRE19 cells stimulated with TNFα, but this effect was disappeared in cells co-incubated with Nrf2 inhibitor. Additionally, the CGA-supplied alleviation on BRB damage and EndoMT/EMT was markedly weakened in retinas from STZ-treated Nrf2 knock-out mice. All results suggest that CGA improves DR through attenuating BRB injury by reducing microglia-initiated inflammation and preventing TNFα-induced EndoMT/EMT and oxidative injury via inducing Nrf2 activation.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Barreira Hematorretiniana/patologia , Ácido Clorogênico/farmacologia , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2
2.
J Ethnopharmacol ; 255: 112773, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32199990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Arctii is the dried ripe fruit of Arctium lappa L. (family Asteraceae). It is a well-known Chinese Materia Medica that was included in the Chinese pharmacopoeia because of its traditional therapeutic actions, such as heat removal, detoxification, and elimination of swelling. Since ancient times Fructus Arctii has been used extensively in a number of classical drug formulas to treat type 2 diabetes mellitus. Modern pharmacological studies have shown that certain components of Fructus Arctii have multiple physiological activities on type 2 diabetes and its complications. AIM OF THE STUDY: We have reported the inhibitory effect of total lignans from Fructus Arctii (TLFA) on aldose reductase, the key enzyme in the polyol pathway, which is considered to be closely related to the onset of diabetic retinopathy (DR). The present study aimed to observe the preventive and therapeutic effects of TLFA on DR in Streptozotocin (STZ)-induced DR rats. MATERIALS AND METHODS: TLFA was prepared from Fructus Arctii and its content was determined using UV spectrophotometry. The DR model was induced by STZ in Wistar rats. For DR prevention, the animals were gavaged once daily for 9 weeks with TLFA (1.38, 0.69, and 0.35 g/kg/day) as soon as they were confirmed as diabetes models. Pathological changes to retinal tissues and the expression of vascular endothelial growth factor (VEGF) and protein kinase C (PKC) in the retina were detected after TLFA treatment. The effects of TLFA on blood glucose levels and body weight were also observed. For DR treatment, the animals were gavaged once daily for 12 weeks with TLFA (1.38 and 0.69 g/kg/day) at 3 months after they were confirmed as diabetes models. The therapeutic effect was studied using quantitative detection of blood-retina barrier (BRB) breakdown via an Evans Blue leakage assay. RESULTS: For DR prevention, after 9 weeks of TLFA administration, histopathological examination of retinal tissue showed that TLFA improved the lesions in the retina. Changes to retinal microstructures such as capillaries, ganglion cells, bipolar cells, and the membrane disk examined by electron microscopy further confirmed that TLFA has a preventive effect on retinopathy. Terminal deoxynucleotidyl Transferase-mediated dUTP nick end labeling (TUNEL) detection showed that TLFA could inhibit retinal cell apoptosis in the diabetic rats, and fasting blood glucose (FBG) levels of rats in the TLFA-treated groups decreased during the experiment. For DR treatment, after 3 months of administration, the amount of dye leakage in the TLFA-administered groups was reduced by more than 50% compared with that in the model group, which indicated that TLFA has a therapeutic effect on middle and late DR. Messenger RNA (mRNA) expression of VEGF and PKCß2 in the retina detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (FQ-RT-PCR) showed that TLFA could inhibit the expression of them, which was consistent with the results of immunohistochemistry (IHC). CONCLUSION: TLFA has a preventive and therapeutic effect on DR. Its mechanism of action on DR is related to inhibiting PKC activation and blocking VEGF elevation.


Assuntos
Arctium , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Frutas , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Retina/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Arctium/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Ativação Enzimática , Frutas/química , Lignanas/isolamento & purificação , Masculino , Extratos Vegetais/isolamento & purificação , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Ratos Wistar , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais , Estreptozocina , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Lipids Health Dis ; 18(1): 114, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092270

RESUMO

Vision disorders are one of the most serious complications of diabetes mellitus (DM) affecting the quality of life of patients and eventually cause blindness. The ocular lesions in diabetes mellitus are located mainly in the blood vessels and retina layers. Different retina lesions could be grouped under the umbrella term of diabetic retinopathies (DMRP).We propose that one of the main causes in the etiopathogenesis of the DMRP consists of a progressive loss of the selective permeability of blood retinal barriers (BRB). The loss of selective permeability of blood retinal barriers will cause a progressive autoimmune process. Prolonged autoimmune injures in the retinal territory will triggers and maintains a low-grade chronic inflammation process, microvascular alterations, glial proliferation and subsequent fibrosis and worse, progressive apoptosis of the photoreceptor neurons.Patients with long-standing DM disturbances in retinal BRBs suffer of alterations in the enzymatic pathways of polyunsaturated fatty acids (PUFAs), increase release of free radicals and pro-inflammatory molecules and subsequently incremented levels of vascular endothelial growth factor. These facts can produce retinal edema and photoreceptor apoptosis.Experimental, clinical and epidemiological evidences showing that adequate metabolic and alimentary controls and constant practices of healthy life may avoid, retard or make less severe the appearance of DMRP. Considering the high demand for PUFAs ω3 by photoreceptor complexes of the retina, it seems advisable to take fish oil supplements (2 g per day). The cellular, subcellular and molecular basis of the propositions exposed above is developed in this article.Synthesizer drawings the most relevant findings of the ultrastructural pathology, as well as the main metabolic pathways of the PUFAs involved in balance and disbalanced conditions are provided.


Assuntos
Autoimunidade , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Inflamação/patologia , Animais , Retinopatia Diabética/patologia , Diretrizes para o Planejamento em Saúde , Humanos
4.
FASEB J ; 32(5): 2539-2548, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29263022

RESUMO

Inflammation plays an important role in the pathogenesis of diabetic retinopathy. We have previously demonstrated the effect of cathepsin D (CD) on the mechanical disruption of retinal endothelial cell junctions and increased vasopermeability, as well as increased levels of CD in retinas of diabetic mice. Here, we have also examined the effect of CD on endothelial-pericyte interactions, as well as the effect of dipeptidyl peptidase-4 (DPP4) inhibitor on CD in endothelial-pericyte interactions in vitro and in vivo. Cocultured cells that were treated with pro-CD demonstrated a significant decrease in the expression of platelet-derived growth factor receptor-ß, a tyrosine kinase receptor that is required for pericyte cell survival; N-cadherin, the key adherens junction protein between endothelium and pericytes; and increases in the vessel destabilizing agent, angiopoietin-2. The effect was reversed in cells that were treated with DPP4 inhibitor along with pro-CD. With pro-CD treatment, there was a significant increase in the phosphorylation of the downstream signaling protein, PKC-α, and Ca2+/calmodulin-dependent protein kinase II in endothelial cells and pericytes, which disrupts adherens junction structure and function, and this was significantly reduced with DPP4 inhibitor treatment. Increased CD levels, vasopermeability, and alteration in junctional-related proteins were observed in the retinas of diabetic rats, which were significantly changed with DPP4 inhibitor treatment. Thus, DPP4 inhibitors may be used as potential adjuvant therapeutic agents to treat increased vascular leakage observed in patients with diabetic macular edema.-Monickaraj, F., McGuire, P., Das, A. Cathepsin D plays a role in endothelial-pericyte interactions during alteration of the blood-retinal barrier in diabetic retinopathy.


Assuntos
Barreira Hematorretiniana/enzimologia , Catepsina D/metabolismo , Comunicação Celular , Retinopatia Diabética/enzimologia , Células Endoteliais/enzimologia , Pericitos/enzimologia , Angiopoietina-2/metabolismo , Animais , Barreira Hematorretiniana/patologia , Caderinas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Catepsina D/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pericitos/patologia , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
5.
Am J Pathol ; 188(3): 805-817, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248456

RESUMO

Although increasing evidence indicates that endothelin-2 (Edn2) has distinct roles in tissue pathology, including inflammation, glial cell dysfunction, and angiogenesis, its role in the retina and the factors that regulate its actions are not fully understood. We hypothesized that Edn2 damages the blood-retinal barrier (BRB) and that this is mediated by interactions with the renin-angiotensin-aldosterone system and reactive oxygen species derived from NADPH oxidase (Nox). C57BL/6J mice received an intravitreal injection of Edn2 or control vehicle to examine the blood pressure-independent effects of Edn2. Mice administered Edn2 were randomized to receive by intraperitoneal injection treatments that inhibited the Edn type a receptor, Edn type b receptor, angiotensin type 1 receptor, mineralocorticoid receptor, or Nox isoforms 1 to 4. One month later, mice administered Edn2 exhibited breakdown of the BRB with increased vascular leakage, vascular endothelial growth factor expression, and infiltrating macrophages (Ly6C+CD45highCD11b+). Further, macroglial Müller cells, which influence the integrity of the BRB and prevent retinal edema, became gliotic and expressed increased levels of water (aquaporin-4) and ion (Kir4.1) channels. This Edn2-mediated retinopathy was reduced by all treatments. Complementary in vitro studies in cultured Müller cells supported these findings and demonstrated the importance of reactive oxygen species in mediating these events. In conclusion, Edn2 has detrimental effects on the BRB and Müller cells that involve interactions with the renin-angiotensin aldosterone system and Nox1/4.


Assuntos
Aldosterona/farmacologia , Angiotensina II/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Endotelina-2/farmacologia , Células Ependimogliais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Retina/efeitos dos fármacos , Aquaporina 4/metabolismo , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Movimento Celular/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia
6.
BMC Complement Altern Med ; 17(1): 497, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169356

RESUMO

BACKGROUND: Aster koraiensis extract (AKE) is a standard dietary herbal supplement. The aim of this study is to investigate the inhibitory effects of AKE on diabetes-induced retinal vascular dysfunction in Spontaneously Diabetic Torii (SDT) rats. METHODS: AKE (50 and 100 mg/kg body weight/day) was administered for 16 weeks. The effects of orally administered AKE on blood glucose levels, retinal vascular leakage, apoptosis, and accumulation of advanced glycation end products (AGEs) in the retina were evaluated. RESULTS: SDT rats exhibited hyperglycemia and retinal vascular leakage, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was clearly detected apoptosis in the retinal microvasculature. Immunofluorescence staining revealed the accumulation of AGEs in the retinal vasculature of the SDT rats. However, oral administration of AKE for 16 weeks blocked diabetes-induced blood-retinal barrier (BRB) breakdown and the loss of occludin, which is an important tight junction protein. Apoptosis of retinal vascular cells and AGE accumulation were significantly inhibited after AKE treatment. CONCLUSION: These results indicate that, as a dietary herbal supplement, AKE may have beneficial effects on patients with diabetic retinopathy.


Assuntos
Aster/química , Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Barreira Hematorretiniana/citologia , Barreira Hematorretiniana/patologia , Diabetes Mellitus Experimental , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/análise , Proteínas de Junções Íntimas/metabolismo
7.
Nutrients ; 7(9): 7821-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26389948

RESUMO

The present study investigates the amelioration of diabetic retinopathy (DR) by Zingiber zerumbet rhizome ethanol extracts (ZZRext) in streptozotocin-induced diabetic rats (STZ-diabetic rats). ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day) for three months. Blood-retinal barrier (BRB) breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB) activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK) in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes.


Assuntos
Anti-Inflamatórios/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Zingiberaceae , Animais , Anti-Inflamatórios/isolamento & purificação , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Claudina-5/metabolismo , Citoproteção , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Masculino , Ocludina/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Polifenóis/isolamento & purificação , Ratos Wistar , Rizoma , Transdução de Sinais/efeitos dos fármacos , Zingiberaceae/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Int J Food Sci Nutr ; 66(2): 236-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582181

RESUMO

Many dietary supplements have been sold through advertising their large number of beneficial effects. The aim of this study was to determine whether bilberries (Vaccinium myrtillus) help to prevent diabetes-induced retinal vascular dysfunction in vivo. V. myrtillus extract (VME; 100 mg/kg) was orally administered to streptozotocin-induced diabetic rats for 6 weeks. All diabetic rats exhibited hyperglycemia, and VME did not affect the blood glucose levels and body weight during the experiments. In the fluorescein-dextran angiography, the fluorescein leakage was significantly reduced in diabetic rats treated with VME. VME treatment also decreased markers of diabetic retinopathy, such as retinal vascular endothelial growth factor (VEGF) expression and degradation of zonula occludens-1, occludin and claudin-5 in diabetic rats. In conclusion, VME may prevent or delay the onset of early diabetic retinopathy. These findings have important implications for prevention of diabetic retinopathy using a dietary bilberry supplement.


Assuntos
Antocianinas/uso terapêutico , Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/prevenção & controle , Suplementos Nutricionais , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Antocianinas/farmacologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Claudina-5/metabolismo , Dextranos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Angiofluoresceinografia , Fluoresceínas/metabolismo , Masculino , Ocludina/metabolismo , Extratos Vegetais/farmacologia , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Vaccinium myrtillus , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
9.
Endocrine ; 46(3): 462-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24287793

RESUMO

Loss of blood-retinal barrier (BRB) properties is an important feature in the pathology of diabetic retinopathy. Endothelium integrity is important for the normal vascular function. Litsea japonica (Thunb.) Jussieu is a Korean native plant that is consumed as a vegetable food. In this study, we evaluated the ability of an ethanol extract of L. japonica to prevent retinal vascular leakages in db/db mice, which is an animal model of type II diabetes. L. japonica extracts (LJE, 100 and 250 mg/kg) were administered once a day, orally, for 12 weeks. Vehicle-treated db/db mice exhibited hyperglycemia and retinal vascular leakage. LJE treatment blocked diabetes-induced BRB breakdown and decreased retinal VEGF expression in db/db mice. LJE also inhibited the degradation of occludin, which is an important tight junction protein. These findings support the potential therapeutic usefulness of L. japonica for retinal vascular permeability diseases.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Litsea , Extratos Vegetais/uso terapêutico , Animais , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Camundongos , Ocludina/metabolismo , Extratos Vegetais/farmacologia , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
PLoS One ; 7(10): e45469, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094016

RESUMO

Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aß and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Hipertensão Ocular/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Endotelina-1/genética , Endotelina-1/metabolismo , Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/uso terapêutico , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA