Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163217

RESUMO

Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant-pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.


Assuntos
Basidiomycota/patogenicidade , Camellia sinensis/genética , Doenças das Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/metabolismo , China , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma/genética
2.
Pak J Biol Sci ; 24(5): 588-598, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486334

RESUMO

<b>Background and Objective:</b> Coffee leaf rust disease caused by <i>Hemileia vastatrix</i> resulted in high yield loss and difficult to control. Several chemical fungicides have been used to control this disease. However, the effectiveness of chemical control is low, so it is necessary to find other methods such as biological control. <i>Lecanicillium</i> spp. is well-known as mycoparasite on <i>H. vastatrix</i> uredospores but the study in Indonesia is still limited. This study aimed to collect and investigated the genetic variability of <i>Lecanicillium</i> spp. at various coffee plantations in Indonesia. <b>Materials and Methods:</b> Samples of <i>Lecanicillium </i>spp. were collected from 20 districts in 7 provinces throughout Indonesia. Morphology of colony and conidia were identified by visual examination and by viewed under the light microscope. Genetic variability was conducted using Rep-PCR and clustered with UPGMA. <b>Results:</b> Morphological observation in this study revealed all isolates collected from uredospores of <i>H. vastatrix</i> were similar with <i>Lecanicillium </i>spp. Genetic variability analysis clustered the 80 isolates into eight clusters with their specific characters. <b>Conclusion:</b> Morphological identification in this study showed that 80 isolates of mycoparasite on <i>H. vastatrix</i> belong to <i>Lecanicillium</i> spp. Further study using the molecular technique is needed to identity the species of <i>Lecanicillium</i>.


Assuntos
Basidiomycota/patogenicidade , Café/efeitos dos fármacos , Hypocreales/isolamento & purificação , Extratos Vegetais/farmacologia , Basidiomycota/metabolismo , Hypocreales/metabolismo , Indonésia , Extratos Vegetais/uso terapêutico
3.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
4.
BMC Plant Biol ; 21(1): 215, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985437

RESUMO

BACKGROUND: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS: In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION: The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Panax/genética , Panax/imunologia , Panax/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Raízes de Plantas/microbiologia , Plantas Medicinais/genética , Plantas Medicinais/microbiologia
5.
Dokl Biol Sci ; 496(1): 13-16, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33635483

RESUMO

Monopustule isolates of wheat, oats and barley rust pathogens reproduced under different environmental conditions were used to infect experimental samples of these crops. Differences in the types of reactions after infection of one plant genotype with one pathogen genotype reproduced at different temperatures, as well as in the presence of potassium chloride, ammonium nitrate and maleic acid hydrazide indicate the impossibility of explaining the phenomena of plant-pathogen interaction within the framework of Flor's classical gene-for-gene theory. Each gene of the host resistance corresponds to several complementary virulence genes, or to several different alleles of one same gene for virulence.


Assuntos
Basidiomycota/genética , Grão Comestível/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Resistência à Doença , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/microbiologia , Genótipo , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
6.
Int J Biol Macromol ; 166: 138-143, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096173

RESUMO

Plant growth promoting rhizobacteria (PGPR) are efficient candidates for the application in agricultural field to enhance the crop yield and to suppress the plant diseases. As the changes in agro-climatic conditions negatively affect the soil fertility and functioning of soil microbial community, there are significant demand for the innovative delivery methods for the PGPR to ensure its optimal performance. In the present study, Pseudomonas sp. DN18 has been entrapped in the alginate beads along with the supplemented salicylic acid (SA) and zinc oxide nanoparticles (ZnONPs). This modified formulation was further demonstrated for the IAA production and also antifungal activity against the Sclerotium rolfsii. In addition, superior plant growth promoting and biocontrol properties of the encapsulated Pseudomonas sp. DN18 supplemented with SA and ZnONPs have also been demonstrated on Oryza sativa seedlings by comparing with the free living Pseudomonas sp. DN18. This revealed the agricultural promises of Pseudomonas sp. DN18 encapsulated in a modified delivery system due to its functional superiority and stability over the free living bacteria based formulation.


Assuntos
Agentes de Controle Biológico , Nanopartículas Metálicas/química , Oryza/microbiologia , Pseudomonas/patogenicidade , Salicilatos/farmacologia , Óxido de Zinco/farmacologia , Alginatos/química , Antifúngicos/química , Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/patogenicidade , Produção Agrícola/métodos , Microesferas , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Salicilatos/química , Óxido de Zinco/química
7.
J Med Food ; 23(12): 1275-1286, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33090944

RESUMO

The fleshy fruits of Camellia oleifera Abel are the immature fruits of C. oleifera, which are infected by Exobasidium vexans Massee and then turn to be intumescent and hollowed. They contain rich trace elements and vitamin C and are eaten directly as wild fruits in the Chinese countryside. Recent studies report that C. oleifera has anti-inflammatory and antioxidative effects. The current study, for the first time, evaluates the renal protective capacity of polysaccharides from the fleshy fruits of C. oleifera (CFFP) in streptozotocin-induced diabetic mice fed high-fat diets. The diabetic mice were orally administered CFFP for 3 months to evaluate the renoprotective function of CFFP. Our results indicated that 250 mg/kg CFFP significantly alleviated diabetes-induced renal injury by decreasing serum creatine, blood urea nitrogen levels, the kidney/body weight ratio, expression of fibronectin and collagen, as well as the secretion of tumor necrosis factor-α and interleukin-6. Additionally, 250 mg/kg CFFP could significantly ameliorate renal oxidative stress through increasing glutathione levels and lowering malondialdehyde contents. We confirmed that CFFP could exert antioxidative, anti-inflammatory, and antifibrosis activities. CFFP might be a potential therapeutic agent, and the fleshy fruits of C. oleifera might be a diet therapy for diabetic patients in the future.


Assuntos
Camellia/química , Diabetes Mellitus Experimental , Nefropatias Diabéticas/tratamento farmacológico , Frutas/química , Polissacarídeos/farmacologia , Animais , Basidiomycota/patogenicidade , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Frutas/microbiologia , Rim , Camundongos , Estreptozocina
8.
Malays J Pathol ; 42(2): 293-296, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32860385

RESUMO

Trichosporon asahii is a yeast-like fungus that is emerging as an important cause of invasive infections in tertiary medical centres. A 58-year-old Chinese man with no known medical illnesses presented with liver lacerations and multiple fractures following an alleged 12-foot fall at a construction site. The gravity of his injuries and poor haemodynamic status necessitated an intensive care unit (ICU) admission, during which several febrile episodes were detected and multiple antibiotics were administered. After being in the ICU for at least two weeks, a urease-positive yeast was isolated from the patient's blood. The yeast formed dry, fuzzy and wrinkled white colonies on Sabouraud dextrose agar following prolonged incubation, and produced blastoconidia, true hyphae, pseudohyphae and arthroconidia on slide culture. It was identified biochemically by the ID 32 C kit as T. asahii. The yeast had elevated minimal inhibitory concentration (MIC) values to fluconazole, amphotericin B, flucytosine and all echinocandins tested. In view of this, the patient was treated with voriconazole and was successfully transferred to the general medical ward.


Assuntos
Basidiomycota , Traumatismo Múltiplo/complicações , Tricosporonose/tratamento farmacológico , Voriconazol/uso terapêutico , Anfotericina B/farmacologia , Antibacterianos/efeitos adversos , Antifúngicos/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/isolamento & purificação , Basidiomycota/patogenicidade , Farmacorresistência Fúngica Múltipla , Fungemia/tratamento farmacológico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Traumatismo Múltiplo/tratamento farmacológico , Voriconazol/farmacologia
9.
Mol Biol Rep ; 47(5): 3765-3778, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32378168

RESUMO

The importance of microbial natural compounds in drug research is increasing every year and they are used to prevent or treat a variety of diseases. Hypomyces chrysospermus is a cosmopolitan parasite of many Boletaceae members. Since not much work has been conducted to date, this study is undertaken to explore the anticancer effect, including the antiproliferative and antimetastatic activity of Hypomyces chrysospermus. The aim of this study is to determine the antiproliferative and antimetastatic activity of Hypomyces chrysospermus ethyl acetate extract, having antioxidant activity, against A549, Caco2, MCF-7 human cancer and CCD-19 Lu and CCD 841 CoN healthy human cell lines. Firstly, cytotoxic activity was determined by the WST-1 assay. After cell proliferations and anti-metastatic effects were investigated by a real-time cell analysis system (RTCA-DP) and IC50 concentrations were calculated for each cell line. In addition, the expression levels of Apaf-1, TNF and NF-kB mRNA in cancer cells were investigated with RealTime-PCR. The ethyl acetate extract of Hypomyces chrysospermus presented anticancer activities including antiproliferative and antimetastatic effects. Hypomyces chrysospermus as a source of biologically active metabolites can be used as an important resource in the development of new anticancer effective agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hypocreales/metabolismo , Células A549/efeitos dos fármacos , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Basidiomycota/patogenicidade , Células CACO-2/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Hypocreales/fisiologia , Células MCF-7/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1789-1792, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31342703

RESUMO

In order to scientifically prevent and control Dendrobium catenatum southern blight disease,the main factors related to this disease occurrence,the pathogen( Sclerotium delphinii),environmental factors( temperature and humidity) and D. catenatum germplasms,were investigated. The results showed that reaching 25-30 ℃ temperature and over 95% humidity simultaneously should be the main conditions for the occurrence and prevalence of D. catenatum southern blight disease. Moreover,the S. delphinii-infected plants and their contaminated substrates were the disease spreading sources. Therefore,removing the infected plants,dealing with the contaminated substrates,keeping air ventilation,and reducing air humidity are the effective ways to prevent and control the occurrence and prevalence of D. catenatum southern blight disease. The research also indicated that D. catenatum has different resistances to the southern blight disease depending on germplasm. The present study lays important foundations for the breeding of D. catenatum diseaseresistant varieties and the further analysis of the infection and resistance mechanisms underlying southern blight disease.


Assuntos
Basidiomycota/patogenicidade , Dendrobium/microbiologia , Doenças das Plantas/microbiologia , Umidade , Temperatura
11.
Sci Rep ; 9(1): 553, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679765

RESUMO

Karnal bunt disease of wheat is incited by quarantine fungal pathogen T. indica. Till date, there is little information on the pathogenic mechanisms involved in Karnal bunt. In order to understand the molecular mechanisms of disease pathogenesis, highly aggressive T. indica TiK isolate was cultured in the presence of host factor extracted from developing spikes of wheat variety WH-542. Modulation in protein profile of mycelial proteins and secretome from TiK cultured in the absence and presence of host factor was analyzed by 2-DE. Fifteen and twenty nine protein spots were up-regulated/differentially regulated in the proteome of mycelial and secreted proteins, respectively and identified using MALDI-TOF/TOF. Identified proteins are involved in suppression of host defense responses, lignin degradation of plant cell wall, penetration, adhesion of pathogen to host tissues, pathogen mediated reactive oxygen species generation, hydrolytic enzymes, detoxification of host generated reactive oxygen species. Further, integration of proteomic and genomic analysis has led to candidate pathogenicity/virulence factors identification. They were functionally annotated by sequence as well as structure based analysis. In this study, complementation of proteomics and genomics approaches resulted in novel pathogenicity/virulence factor(s) identification in T. indica.


Assuntos
Basidiomycota/genética , Basidiomycota/patogenicidade , Genômica/métodos , Interações entre Hospedeiro e Microrganismos/fisiologia , Proteômica/métodos , Fatores de Virulência/genética , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Metabolismo dos Carboidratos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Hidrólise , Doenças das Plantas/microbiologia , Extratos Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triticum/química , Triticum/microbiologia , Virulência , Fatores de Virulência/metabolismo
12.
Phytopathology ; 109(4): 593-606, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30307801

RESUMO

Rust (Melampsora apocyni) on Apocynum venetum is the major constraint to the commercial development of this medicinal herb. To determine the factors influencing rust intensity (maximum disease index [DImax]), rust was investigated from 2011 to 2015 in both cultivated and wild A. venetum plants. Partial least squares path modeling (PLS-PM) was used to analyze the paths and extent of the factors related to pathogen, environment, and host that affect rust intensity. DImax exhibited considerable variations across years and study sites, with variations linked to various factors fostering disease development. PLS-PM explained 80.0 and 70.1% of variations in DImax in cultivated and wild plants, respectively. Precipitation was the key factor determining DImax in both cultivated and wild plants (path coefficient [PC] = 0.313 and 0.544, respectively). In addition, the topsoil water content in cultivated plants and the total vegetation coverage in wild plants were also critical determinants of DImax via their effects on the microclimatic factor (contribution coefficients [CC] = 0.681 and 0.989, respectively; PC = 0.831 and 0.231, respectively). In both cultivated and wild plants, host factors were mainly dominated by A. venetum density (CC = 0.989 and 0.894, respectively), and their effect on DImax via the microclimatic factor (PC = 0.841 and 0.862, respectively) exceeded that via the inoculum factor (PC = 0.705 and 0.130, respectively). However, the indirect effects led to DImax variation, while the dilution effect on host (CC = 0.154) from weed in wild plants led to the indirect effect size in wild plants of 0.200, which was lower than -0.699 in cultivated plants.


Assuntos
Apocynum , Basidiomycota , Chuva , Apocynum/crescimento & desenvolvimento , Basidiomycota/patogenicidade , China , Doenças das Plantas , Chuva/microbiologia
13.
An Acad Bras Cienc ; 90(4): 3949-3962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427392

RESUMO

Garlic (Allium sativum L.) plays an important role in popular culture due to its dietary and medicinal uses. It is also used to produce a wide range of pharmacologically interesting molecules. Several pathogens affect garlic plants, especially Athelia (Sclerotium) rolfsii, a fungus that is widespread and causes large economic losses. It causes direct damage to crops and leads to plant stress, which induces secondary metabolite production in plants. The use of microorganisms as biocontrol agents may induce the production of beneficial metabolites in plants that will protect it and promote resistance to pathogen attack. In addition to suppressing disease, biological control agents may have elicitor effects that could induce an increase in the production of useful bioactive secondary metabolites in plants, some of which may be of pharmacological interest. Therefore, the search for new biological control agents should also consider their potential as elicitor agents. This paper presents an analysis of the biological control of Athelia (Sclerotium) rolfsii by antagonistic microrganisms, the potential of yeasts and bacteria of the genus Bacillus for the biocontrol of phytopathogens, microrganisms influence in nutritional and bioactive compounds content of interest to the pharmaceutical industry.


Assuntos
Basidiomycota/patogenicidade , Agentes de Controle Biológico , Alho/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
14.
Sci Rep ; 8(1): 5929, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651009

RESUMO

The plant Dysosma versipellis is known for its antimicrobial and anticancer properties but is a rare and vulnerable perennial herb that is endemic to China. In this study, 224 isolates were isolated from various tissues of D. versipellis, and were classified into 53 different morphotypes according to culture characteristics and were identified by sequence analyses of the internal transcribed spacer (ITS) region of the rRNA gene. Although nine strains were not assignable at the phylum level, 44 belonged to at least 29 genera of 15 orders of Ascomycota (93%), Basidiomycota (6%), and Zygomycota (1%). Subsequent assays revealed antimicrobial activities of 19% of endophytic extracts against at least one pathogenic bacterium or fungus. Antimicrobial activity was also determined using the agar diffusion method and was most prominent in extracts from four isolates. Moreover, high performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry analyses (UPLC-QTOF MS) showed the presence of podophyllotoxin in two Fusarium strains, with the highest yield of 277 µg/g in Fusarium sp. (WB5121). Taken together, the present data suggest that various endophytic fungi of D. versipellis could be exploited as sources of novel natural antimicrobial or anticancer agents.


Assuntos
Berberidaceae/química , Endófitos/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Anti-Infecciosos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Basidiomycota/efeitos dos fármacos , Basidiomycota/patogenicidade , Biodiversidade , Humanos , Extratos Vegetais/química , Folhas de Planta/química
15.
Zhongguo Zhong Yao Za Zhi ; 43(3): 478-483, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600611

RESUMO

In this study, an endophytic bacteria strain BZJN1 was isolated from Atractylodes macrocephala, and identified as Bacillus subtilis by physiological and biochemical tests and molecular identification. Strain BZJN1 could inhibit the growth of mycelia of Ceratobasidium sp. significantly, and the inhibition rate was more than 70%. The mycelium growth deformity with bulge as spherical and partially exhaustible in apex or central with microscopic observation. The inhibitory rates under 3% and 6% concentrations of the cell free fermentation were 22.7% and 38.7% expectively. The field test proved that the control efficacy of treatment of 1×108 cfu·mL⁻¹ is 75.27% and 72.37% after 10 and 20 days. All the treatments of strain BZJN1 was able to promote the growth of A. macrocephala, the treatment of 1×108 cfu·mL⁻¹ could able to increase the yield to 14.1%.


Assuntos
Atractylodes/microbiologia , Bacillus subtilis/fisiologia , Basidiomycota/patogenicidade , Agentes de Controle Biológico , Doenças das Plantas/prevenção & controle , Endófitos/classificação , Endófitos/isolamento & purificação , Doenças das Plantas/microbiologia
16.
Mol Plant Pathol ; 19(7): 1742-1753, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29328532

RESUMO

Coffee leaf rust, caused by Hemileia vastatrix (Hv), represents the biggest threat to coffee production worldwide and ranks amongst the most serious fungal diseases in history. Despite a recent series of outbreaks and emergence of hypervirulent strains, the population evolutionary history and potential of this pathogen remain poorly understood. To address this issue, we used restriction site-associated DNA sequencing (RADseq) to generate ∼19 000 single nucleotide polymorphisms (SNPs) across a worldwide collection of 37 Hv samples. Contrary to the long-standing idea that Hv represents a genetically unstructured and cosmopolitan species, our results reveal the existence of a cryptic species complex with marked host tropism. Using phylogenetic and pathological data, we show that one of these lineages (C3) infects almost exclusively the most economically valuable coffee species (tetraploids that include Coffea arabica and interspecific hybrids), whereas the other lineages (C1 and C2) are severely maladapted to these hosts, but successfully infect diploid coffee species. Population dynamic analyses suggest that the C3 group may be a recent 'domesticated' lineage that emerged via host shift from diploid coffee hosts. We also found evidence of recombination occurring within this group, which could explain the high pace of pathotype emergence despite the low genetic variation. Moreover, genomic footprints of introgression between the C3 and C2 groups were discovered and raise the possibility that virulence factors may be quickly exchanged between groups with different pathogenic abilities. This work advances our understanding of the evolutionary strategies used by plant pathogens in agro-ecosystems with direct and far-reaching implications for disease control.


Assuntos
Basidiomycota/patogenicidade , Café/genética , Café/microbiologia , Sequência de Bases , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética
17.
J Environ Sci Health B ; 53(2): 135-140, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29173073

RESUMO

As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.


Assuntos
Curcuma/química , Fungicidas Industriais/farmacologia , Lactonas/farmacologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Acetatos/química , Basidiomycota/efeitos dos fármacos , Basidiomycota/patogenicidade , Fungicidas Industriais/química , Hexanos , Lactonas/química , Lactonas/isolamento & purificação , Solanum lycopersicum/microbiologia , Metanol/química , Estrutura Molecular , Agricultura Orgânica/métodos , Oryza/microbiologia , Extratos Vegetais/química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Solventes/química , Triticum/microbiologia
18.
Sci Rep ; 7(1): 16221, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176690

RESUMO

Fungal endophytes isolated from mountain-cultivated ginseng (MCG, Panax ginseng Meyer) were explored for their diversity and biocontrol activity against ginseng pathogens (Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, Pythium sp. and Rhizoctonia solani). A total of 1,300 isolates were isolated from three tissues (root, stem and leaf) from MCGs grown in 24 different geographic locations in Korea. In total, 129 different fungal isolates were authenticated by molecular identification based on internal transcribed spacer (ITS) sequences. The fungal endophytes belonged to Ascomycota (81.7%), Basidiomycota (7.08%), Zygomycota (10%) and Unknown (1.15%), with 59 genera. Analysis of diversity indices across sampling sites suggested species abundance as a function of geographical and environmental factors of the locations. Shannon diversity index and richness in the different tissues revealed that root tissues are colonized more than stem and leaf tissues, and also certain fungal endophytes are tissue specific. Assessment of the ethyl acetate extracts from 129 fungal isolates for their biocontrol activity against 5 ginseng pathogens revealed that Trichoderma polysporum produces the antimcriobial metabolite against all the pathogens. This result indicates the promise of its potential usage as a biocontrol agent.


Assuntos
Endófitos/patogenicidade , Interações Hospedeiro-Patógeno , Microbiota , Panax/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Basidiomycota/genética , Basidiomycota/patogenicidade
19.
Phytochemistry ; 115: 152-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25819001

RESUMO

This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity.


Assuntos
Antifúngicos/análise , Basidiomycota/patogenicidade , Alho/química , Antifúngicos/química , Ascomicetos , Basidiomycota/efeitos dos fármacos , Monoterpenos Bicíclicos , Monoterpenos Cicloexânicos , Cicloexanóis , Cicloexenos , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos , Folhas de Planta/química , Raízes de Plantas/química , Sesquiterpenos , Terpenos
20.
Funct Integr Genomics ; 15(4): 461-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25772466

RESUMO

Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.


Assuntos
Basidiomycota/patogenicidade , Camellia sinensis/genética , Quitinases/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Camellia sinensis/microbiologia , Quitinases/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA