Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 287: 120125, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762904

RESUMO

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Assuntos
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidade , Glutationa/metabolismo , Hepatócitos/metabolismo , Animais , Sítios de Ligação/fisiologia , Células Cultivadas , Indutores do Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/toxicidade , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
2.
J Ethnopharmacol ; 270: 113873, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33485970

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes. AIM OF THE STUDY: This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection. MATERIALS AND METHODS: Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied. RESULTS: The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells. CONCLUSIONS: In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.


Assuntos
Anti-Infecciosos/toxicidade , Benzofuranos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/induzido quimicamente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos ICR , Necrose/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/genética
3.
Environ Toxicol Pharmacol ; 80: 103493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32961280

RESUMO

Increasing prevalence of herbal and dietary supplement-induced hepatotoxicity has been reported worldwide. Usnic acid (UA) is a well-known hepatotoxin derived from lichens. Since 2000, more than 20 incident reports have been received by the US Food and Drug Administration after intake of UA containing dietary supplement resulting in severe complications. Scientists and clinicians have been studying the cause, prevention and treatment of UA-induced hepatotoxicity. It is now known that UA decouples oxidative phosphorylation, induces adenosine triphosphate (ATP) depletion, decreases glutathione (GSH), and induces oxidative stress markedly leading to lipid peroxidation and organelle stress. In addition, experimental rat liver tissues have shown massive vacuolization associated with cellular swellings. Additionally, various signaling pathways, such as c-JNK N-terminal kinase (JNK), store-operated calcium entry, nuclear erythroid 2-related factor 2 (Nrf2), and protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathways are stimulated by UA causing beneficial or harmful effects. Nevertheless, there are controversial issues, such as UA-induced inflammatory or anti-inflammatory responses, cytochrome P450 detoxifying UA into non-toxic or transforming UA into reactive metabolites, and unknown mechanism of the formation of vacuolization and membrane pore. This article focused on the previous and latest comprehensive putative mechanistic findings of UA-induced hepatotoxicity and cell death. New insights on controversial issues and future perspectives are also discussed and summarized.


Assuntos
Benzofuranos/toxicidade , Fígado/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
4.
Eur J Med Chem ; 205: 112493, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745819

RESUMO

Leishmaniasis, a neglected tropical disease caused by parasites of the genus Leishmania, causes a serious burden of disease around the world, represents a threat to the life of millions of people, and therefore is a major public health problem. More effective and non-toxic new treatments are required, especially for visceral leishmaniasis, the most severe form of the disease. On the backdrop that dihydrobenzofurans have previously shown antileishmanial activity, we present here the synthesis of a set of seventy trans-2-phenyl-2,3-dihydrobenzofurans and evaluation of their in vitro activity against Leishmania donovani as well as a discussion of structure-activity relationships. Compounds 8m-o and 8r displayed the highest potency (IC50 < 2 µmol/L) and interesting selectivity of the antileishmanial activity over cytotoxicity against mammalian cells (SI > 4.6). Nonetheless, structural optimization as further requirement was inferred from the high clearance of the most potent compound (8m) observed during determination in vitro of its metabolic stability. On the other hand, chiral separation of 8m and subsequent biological evaluation of its enantiomers demonstrated no effect of chirality on activity and cytotoxicity. Holistic analysis of in silico ADME-like properties and ligand efficiency metrics by a simple scoring function estimating druglikeness highlighted compounds 16c, 18 and 23 as promising candidates for further development. Overall, the potential of trans-2-phenyl-2,3-dihydrobenzofurans as leishmanicidal agents was confirmed.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Leishmania donovani/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/toxicidade , Benzofuranos/química , Benzofuranos/toxicidade , Linhagem Celular , Técnicas de Química Sintética , Humanos , Estereoisomerismo , Relação Estrutura-Atividade
5.
Z Naturforsch C J Biosci ; 75(7-8): 291-295, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32568736

RESUMO

Fraxinellone is a naturally occurring degraded limonoid isolated from many species of plants in Meliaceae and Rutaceae. Besides structural modification of the lead compounds, the toxicology study of the lead compounds is also a very important procedure to develop insecticidal agents. Herein the toxicology study of fraxinellone was carried out as the ovicidal agent against the eggs of two lepidopteran insects Mythimna separata Walker and Bombyx mori Linaeus. Fraxinellone selectively exhibited an ovicidal activity against the eggs of M. separata. After treatment with fraxinellone, the eggshells of M. separata were shrinked, whereas those of B. mori had no obvious change. The dynamic process of M. separata embryo development demonstrated that the distinct difference between the treated eggs and the control ones was obvious at the second day after treatment, especially, the control embryo finished blastokinesis, whereas the treated ones were still laid at pre-reversion status and a lot of yolk can be seen around the embryo. It ultimately resulted in the eggshell withered and the egg hatching inhibited.


Assuntos
Benzofuranos/toxicidade , Inseticidas/toxicidade , Lepidópteros/classificação , Lepidópteros/crescimento & desenvolvimento , Exoesqueleto/efeitos dos fármacos , Animais , Benzofuranos/química , Bombyx/classificação , Bombyx/efeitos dos fármacos , Bombyx/embriologia , Cristalografia por Raios X , Inseticidas/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Lepidópteros/efeitos dos fármacos , Meliaceae/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Rutaceae/química , Especificidade da Espécie
6.
BMC Complement Med Ther ; 20(1): 73, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143619

RESUMO

BACKGROUND: Recent studies indicated that seeded fibril formation and toxicity of α-synuclein (α-syn) play a main role in the pathogenesis of certain diseases including Parkinson's disease (PD), multiple system atrophy, and dementia with Lewy bodies. Therefore, examination of compounds that abolish the process of seeding is considered a key step towards therapy of several synucleinopathies. METHODS: Using biophysical, biochemical and cell-culture-based assays, assessment of eleven compounds, extracted from Chinese medicinal herbs, was performed in this study for their effect on α-syn fibril formation and toxicity caused by the seeding process. RESULTS: Salvianolic acid B and dihydromyricetin were the two compounds that strongly inhibited the fibril growth and neurotoxicity of α-syn. In an in-vitro cell model, these compounds decreased the insoluble phosphorylated α-syn and aggregation. Also, in primary neuronal cells, these compounds showed a reduction in α-syn aggregates. Both compounds inhibited the seeded fibril growth with dihydromyricetin having the ability to disaggregate preformed α-syn fibrils. In order to investigate the inhibitory mechanisms of these two compounds towards fibril formation, we demonstrated that salvianolic acid B binds predominantly to monomers, while dihydromyricetin binds to oligomeric species and to a lower extent to monomers. Remarkably, these two compounds stabilized the soluble non-toxic oligomers lacking ß-sheet content after subjecting them to proteinase K digestion. CONCLUSIONS: Eleven compounds were tested but only two showed inhibition of α-syn aggregation, seeded fibril formation and toxicity in vitro. These findings highlight an essential beginning for development of new molecules in the field of synucleinopathies treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , alfa-Sinucleína/antagonistas & inibidores , Animais , Benzofuranos/farmacologia , Benzofuranos/toxicidade , Flavonóis/farmacologia , Flavonóis/toxicidade , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Agregação Patológica de Proteínas , Sinucleinopatias/tratamento farmacológico
7.
J Photochem Photobiol B ; 205: 111814, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32092663

RESUMO

This study focused on the investigation of photodegradation of usnic acid (UA) which is a natural UV absorbing agent in lichens. Despite years of historical use in food supplement, traditional medicine or cosmetic products in many countries, liver toxicity has been found to be one of the severe and life threatening adverse effects in early 2000's. Such severe side effect has limited UA or its synthesized derivatives for further use clinically or commercially. In this study, extracted UA from Usnea longissima in methanol was exposed to natural sunlight for 21 days. Five photodegraded derivatives (1 to 5) with two new and three previously explored compounds were isolated and purified by column chromatography and preparative liquid chromatography. The structures of these derivatives were identified based on the data of nuclear magnetic resonance spectrum, mass spectrum, optical rotation, infrared spectrum, X-ray crystallography and/or electronic circulation dichroism. The cytotoxicity of (+)-UA and 2 to 5 in liver L02 cells and melanocytes were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Experimental results indicated that IC50 of (+)-UA in liver L02 cells and melanocytes were 24.4 and 6.9 µM respectively, while compound 2 to 5 have lower cytotoxicity with IC50 of 326.7, 1085.0, 62.7 and 152.4 µM in L02 cells and 87.7, 297.7, 60.2 and 85.0 µM in melanocytes respectively. Besides, (+)-UA and these derivatives were exposed to fix dosed of UVA or UVB. The anti-UVA/UVB activity was determined via Hoechst33342/propidium iodide double staining method, and quantified by computer linked fluorescence microscope equipped with CellsSense Dimension system. Based on analysis, Compound 2 to 5 captured prominent UVA/UVB protection capacity in both hepatocytes and melanocytes (p < .001). In addition, the effects of chemicals on tyrosinase were evaluated via Western Blot analysis. In terms of tyrosinase expression, only 2 showed significant stimulating effect (p < .05). However, the safe use of these derivatives cutaneously should be further studied. In conclusion, the photodegraded derivatives (2 to 5) of extracted UA have lower hepatotoxicity than (+)-UA and captured significant UV protection activities.


Assuntos
Benzofuranos , Hepatócitos/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Raios Ultravioleta , Benzofuranos/química , Benzofuranos/efeitos da radiação , Benzofuranos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Melanócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fotólise
8.
Environ Pollut ; 259: 113820, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918130

RESUMO

Environmental exposure to 2,3,7,8-tetrachlorodibenzofuran (TCDF), one of typical persistent organic pollutants (POPs) produced from municipal waste combustion, exerts toxic effects on human healthy. In the current study, we mainly used targeted metabolomics combined with untargeted 1H NMR-based metabolomics to investigate the effects of TCDF exposure on lipid homeostasis in mice. We found that TCDF exposure induced hepatic lipogenesis, the early-stage of non-alcoholic fatty liver disease, manifested by excessive lipids including triglycerides, fatty acids and lipotoxic ceramides accumulated in the liver together with elevated serum very low-density lipoprotein by activating the aryl hydrocarbon receptor (AHR) and its target genes such as Cyp1a1 and Cd36. We also found that TCDF exposure induced alteration of phospholipids and choline metabolites and endoplasmic reticulum (ER) markers in the liver of mice, indicating that disruption of host cell membrane structural integrity and ER stress leading to hepatic steatosis. In addition, complementary information was also obtained from histopathologic assessments and biological assays, strongly supporting toxic effects of TCDF. These results provide new evidence of TCDF toxicity associated with fatty liver disease and further our understanding of health effects of environmental pollutants exposure.


Assuntos
Benzofuranos/toxicidade , Fígado Gorduroso/induzido quimicamente , Animais , Humanos , Fígado , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica
9.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274140

RESUMO

Cortex Dictamni is a commonly-used traditional Chinese herbal medicine for the treatment of skin inflammation, tinea, and eczema. Recently, some studies reported that Cortex Dictamni might induce liver injury, suggesting more attention to its safety. The current study was designed to investigate subchronic toxicity of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDEE) in mice and the potential hepatotoxicity mechanisms in vitro. Firstly, CDAE or CDEE groups were administrated with varying dosages (2.3, 4.6, or 9.2 g/kg/day, p.o.) in mice for 28 days in subchronic toxicity studies. General clinical signs and biochemical parameters were examined, and morphological analyses were conducted. Secondly, we identified the different constituents of CDAE and CDEE using HPLC-MS/MS and chose major components for further study. In order to determine the toxic components, we investigated the cytotoxicity of extracts and chosen components using CCK-8 assay in HepG2 cells. Furthermore, we explored the possible hepatotoxicity mechanisms of Cortex Dictamni using a high content analysis (HCA). The results showed that no significant differences of general clinical signs were observed in mice. Aspartate alanine aminotransferase (ALT) and aminotransferase (AST) were significantly increased in the high-dose CDAE and CDEE groups compared to the control group. Meanwhile, the absolute and relative liver weights and liver/brain ratio were significantly elevated, and histological examination of liver demonstrated cellular enlargement or nuclear shrinkage. In UPLC analysis, we compared the chemical constituents between CDAE and CDEE, and chose dictamnine, obakunone, and fraxinellone for hepatotoxicity evaluation in the in vitro studies. In the CCK-8 assay, CDAE, CDEE, dictamnine, obakunone, and fraxinellone decreased the cell viability in a dose-dependent manner after treatment for 48 h. Furthermore, the cell number decreased, while the nuclear intensity, cell membrane permeability, and concentration of reactive oxygen species were shown to increase, meanwhile, mitochondrial membrane potential was also changed in HepG2 cells following 48 h of compounds treatment using HCA. Our studies suggested that CDAE and CDEE have potential hepatotoxicity, and that the alcohol extraction process could increase toxicity. Dictamnine, obakunone, and fraxinellone may be the possible toxic components in Cortex Dictamni with dictamnine as the most potentially hepatotoxic component, whose potential hepatotoxicity mechanism may be associated with cell apoptosis. Moreover, this study could provide valuable data for clinical drug safety research of Cortex Dictamni and a good example for safety study of other Chinese herbal medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dictamnus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/toxicidade , Benzoxepinas/química , Benzoxepinas/toxicidade , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/química , Feminino , Células Hep G2 , Humanos , Limoninas/química , Limoninas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Quinolinas/química , Quinolinas/toxicidade , Testes de Toxicidade Subcrônica , Água/química
10.
Bioorg Med Chem ; 26(3): 581-589, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317148

RESUMO

A novel series of benzodihydrofuran derivatives was developed as potent MEK inhibitors through scaffold hopping based on known clinical compounds. Further SAR exploration and optimization led to another benzofuran series with good oral bioavailability in rats. One of the compounds EBI-1051 (28d) demonstrated excellent in vivo efficacy in colo-205 tumor xenograft models in mouse and is suitable for pre-clinical development studies for the treatment of melanoma and MEK associated cancers. Compared to AZD6244, EBI-1051 showed superior potency in some cancer cell lines such as colon-205, A549 and MDA-MB-231.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacocinética , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Transplante Heterólogo
11.
J Environ Sci Health B ; 53(1): 49-56, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29035634

RESUMO

In this study, the insecticide potential of eight phthalides derived from furan-2(5H)-one was evaluated against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae. The potency of the most active phthalides and the susceptibility of six different T. absoluta populations to these compounds were determined. The toxicity of these molecules to two non-target species (Solenopsis saevissima Smith and Tetragonisca angustula Latreille) was also evaluated. Two phthalides (3 and 4) presented insecticide potential against T. absoluta. Phthalide 4 was as toxic as piperine (positive control) and both phthalides exhibited rapid action (LT50 < 2 hours). The variation in the susceptibility of T. absoluta populations to the phthalides 3 and 4 was low. Neither phthalide presented physiological selectivity for non-target species. Therefore, the phthalides 3 and 4 are promising molecules, or at least, a starting point for a chemical optimization program leading to formulations for the management of the tomato leafminer. The application of such products should be conducted according to the principles of ecological selectivity.


Assuntos
Benzofuranos/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Animais , Formigas/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Benzofuranos/farmacologia , Benzofuranos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Inseticidas/química , Larva/efeitos dos fármacos
12.
Bioorg Med Chem Lett ; 27(20): 4630-4634, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927792

RESUMO

Two new compounds heliotropiumides A (1) and B (2), phenolamides each with an uncommon carbamoyl putrescine moiety, were isolated from the seeds of a naturalized Hawaiian higher plant, Heliotropium foertherianum Diane & Hilger in the borage family, which is widely used for the treatment of ciguatera fish poisoning. The structures of compounds 1 and 2 were characterized based on MS spectroscopic and NMR analysis, and DP4+ calculations. The absolute configuration (AC) of compound 1 was determined by comparison of its optical rotation with those reported in literature. Compound 2 showed inhibition against NF-κB with an IC50 value of 36µM.


Assuntos
Amidas/farmacologia , Benzofuranos/química , Heliotropium/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Amidas/química , Amidas/toxicidade , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/isolamento & purificação , Antineoplásicos Alquilantes/farmacologia , Benzofuranos/farmacologia , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Heliotropium/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fenóis/farmacologia , Fenóis/toxicidade , Extratos Vegetais/uso terapêutico , Putrescina/química , Intoxicação por Frutos do Mar/prevenção & controle
13.
Arch Toxicol ; 91(3): 1293-1307, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27369375

RESUMO

Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6 h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.


Assuntos
Benzofuranos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Elementos de Resposta Antioxidante/efeitos dos fármacos , Benzofuranos/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
14.
Biol Pharm Bull ; 39(11): 1839-1845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803455

RESUMO

This study evaluated the influence of Styrax camporum stems hydroalcoholic extract (SCHE) and of chemical markers of the genus, egonol (EG) and homoegonol (HE), on DNA damage induced in V79 cells by mutagens with different mechanisms of action. These natural products were combined with different mutagens [methyl methanesulfonate (MMS), hydrogen peroxide (H2O2), (S)-(+)-camptothecin (CPT), and etoposide (VP-16)] to evaluate the modulatory effect on DNA damage. The results showed that SCHE was genotoxic at the highest concentration tested (60 µg/mL). Treatment with EG or HE alone induced no genotoxic effect, while genotoxic activity was observed when the two compounds were combined. The SCHE extract was able to reduce the frequency of micronuclei induced by H2O2 and VP-16. Similar results were observed when the cell cultures were treated with EG and/or HE plus VP-16. In contrast, the highest concentration (40 µg/mL) SCHE potentiated DNA damage induced by VP-16. Neolignan EG alone or combined with HE also potentiated H2O2-induced genotoxicity. However, these natural products did not influence the frequency of DNA damage induced by MMS or CPT. Therefore, the influence of SCHE and of chemical markers (EG and HE) of the genus on the induction of DNA damage depends on the concentration tested and on the mutagen used.


Assuntos
Anisóis/farmacologia , Benzofuranos/farmacologia , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Extratos Vegetais/farmacologia , Styrax , Animais , Anisóis/toxicidade , Benzofuranos/toxicidade , Camptotecina/toxicidade , Linhagem Celular , Ensaio Cometa , Cricetulus , Etoposídeo/toxicidade , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , Extratos Vegetais/toxicidade
15.
Phytomedicine ; 23(9): 939-47, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387402

RESUMO

BACKGROUND: Psoralidin (PSO), a natural phenolic coumarin, was reported to have anti-cancer activities. PSO induced reactive oxygen species (ROS) generation in cancer cells. The role of ROS in its anti-cancer effect remains unclear. PURPOSE: This study was designed to investigate the potential roles of ROS in PSO-induced anti-cancer effect in MCF-7 breast cancer cells. METHODS: Effect of PSO on cancer cell proliferation was determined by MTT assay. Comet assay was used to determine DNA damage. Protein expression was detected by Western blotting. Autophagic vacuoles were detected by monodansylcadaverine (MDC) staining. ROS generation was measured by fluorescent probe. NOX4 localization was determined by immunofluorescence staining. RESULTS: PSO treatment caused proliferation inhibition in time- and dose- dependent manners, which was partially reversed by N-acetyl cysteine (NAC) and diphenyleneiodonium (DPI). PSO induced DNA damage and increased protein expression of γ-H2AX, phosphorylation of ATM, ATR, Chk1, and Chk2. PSO induced autophagy as evidenced by the accumulation of autophagic vacuoles and alterations of autophagic protein expression. PSO-induced cell death was enhanced by autophagy inhibitor chloroquine (CQ). Furthermore, PSO treatment induced ROS formation, which was reversed by NAC or DPI pretreatment. The expression of NOX4 was significantly enhanced by PSO. Both NAC and DPI could reverse PSO-induced DNA damage and autophagic responses. In addition, silencing NOX4 by siRNA inhibited PSO-induced ROS generation, DNA damage, and autophagy. CONCLUSIONS: Taken together, these results showed that PSO induced DNA damage and protective autophagy mediated by ROS generation in a NOX4-dependent manner in MCF-7 cells.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Autofagia/efeitos dos fármacos , Benzofuranos/toxicidade , Neoplasias da Mama/genética , Cumarínicos/toxicidade , Dano ao DNA , NADPH Oxidases/metabolismo , Espécies Reativas de Nitrogênio , Apoptose/efeitos dos fármacos , Cadaverina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Corantes Fluorescentes , Inativação Gênica , Humanos , Células MCF-7 , NADPH Oxidase 4 , NADPH Oxidases/genética , RNA Interferente Pequeno/farmacologia
16.
Res Vet Sci ; 106: 29-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27234532

RESUMO

Tremetone and possibly other benzofuran ketones are believed to be the toxic compounds in white snakeroot. However, disease has not been reproduced with purified toxins and the concentrations of the benzofuran ketones in white snakeroot populations that cause toxicosis have not been documented. The objectives of this study were to compare the toxicity of seven plant populations, better characterize the clinical and pathologic changes of poisoning, and correlate intoxication with benzofuran ketone content. Four of the seven white snakeroot collections were toxic at the dose and duration used in the study. Affected goats became exercise intolerant, had significant serum enzyme changes and histological lesions in the large appendicular muscles. The incidence and severity of poisoning was not correlated with total doses of tremetone or total benzofuran ketone concentrations suggesting they may not be closely involved in producing toxicity and the possible involvement of an unidentified toxin. The results also demonstrate that white snakeroot populations vary chemically and toxicologically.


Assuntos
Ageratina/química , Benzofuranos/toxicidade , Doenças das Cabras/etiologia , Extratos Vegetais/toxicidade , Intoxicação por Plantas/veterinária , Animais , Relação Dose-Resposta a Droga , Feminino , Cabras , Distribuição Aleatória
17.
Cancer Sci ; 107(6): 803-11, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27019404

RESUMO

Cancer tissues have biological characteristics similar to those observed in embryos during development. Many types of cancer cells acquire pro-invasive ability through epithelial-mesenchymal transition (EMT). Similar processes (gastrulation and migration of cranial neural crest cells [CNCC]) are observed in the early stages of embryonic development in Xenopus during which cells that originate from epithelial sheets through EMT migrate to their final destinations. The present study examined Xenopus embryonic tissues to identify anti-cancer compounds that prevent cancer invasion. From the initial test of known anti-cancer drugs, AMD3100 (an inhibitor of CXCR4) and paclitaxel (a cytoskeletal drug targeting microtubules) effectively prevented migration during gastrulation or CNCC development. Blind-screening of 100 synthesized chemical compounds was performed, and nine candidates that inhibited migration of these embryonic tissues without embryonic lethality were selected. Of these, C-157 (an analog of podophyllotoxin) and D-572 (which is an indole alkaroid) prevented cancer cell invasion through disruption of interphase microtubules. In addition, these compounds affected progression of mitotic phase and induced apoptosis of SAS oral cancer cells. SAS tumors were reduced in size after intratumoral injection of C-157, and peritoneal dissemination of melanoma cells and intracranial invasion of glioma cells were inhibited by C-157 and D-572. When the other analogues of these chemicals were compared, those with subtle effect on embryos were not tumor suppressive. These results suggest that a novel chemical-screening approach based on Xenopus embryos is an effective method for isolating anti-cancer drugs and, in particular, targeting cancer cell invasion and proliferation.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Xenopus/embriologia , Animais , Antineoplásicos/toxicidade , Benzodioxóis/análise , Benzodioxóis/farmacologia , Benzodioxóis/toxicidade , Benzofuranos/análise , Benzofuranos/farmacologia , Benzofuranos/toxicidade , Carbolinas/análise , Carbolinas/farmacologia , Carbolinas/toxicidade , Linhagem Celular Tumoral , Perda do Embrião , Feminino , Gastrulação/efeitos dos fármacos , Glioma/patologia , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/toxicidade , Melanoma Experimental/patologia , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Invasividade Neoplásica/prevenção & controle , Paclitaxel/farmacologia , Podofilotoxina/análogos & derivados , Ratos , Receptores CXCR4/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Mol Sci ; 16(12): 29345-56, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26690140

RESUMO

Our previous study indicated that the combination of salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1), the main components of Salvia miltiorrhizae and Panax notoginseng, improves myocardium structure and ventricular function in rats with ischemia/reperfusion injury. The present study aimed to determine the safety of the combined SalB and Rg1 (SalB-Rg1) in mice. The safety of SalB-Rg1 was evaluated through acute toxicity and repeated-dose toxicity. In the acute toxicity study, the up and down procedure was carried out firstly, and then, the Bliss method was applied. In the toxicity study for seven-day repeated treatment of SalB-Rg1, forty Kunming mice were randomly divided into four groups. The intravenous median lethal dose (LD50) of the SalB-Rg1 combination was 1747 mg/kg using the Bliss method. For both the acute toxicity study and the seven-day repeated toxicity study, SalB-Rg1 did not induce significant abnormality on brain, heart, kidney, liver and lung structure at any dose based on H&E stain. There were no significant changes related to the SalB-Rg1 toxicity detected on biochemical parameters for two kinds of toxicity studies. The LD50 in mice was 1747 mg/kg, which was more than one hundred times higher than the effective dose. Both studies of acute toxicity and seven-day repeated dose toxicity indicated the safety of the SalB-Rg1 combination.


Assuntos
Benzofuranos/toxicidade , Fármacos Cardiovasculares/toxicidade , Ginsenosídeos/toxicidade , Animais , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Feminino , Dose Letal Mediana , Masculino , Camundongos
19.
Molecules ; 20(11): 20312-9, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569212

RESUMO

A series of butylphthalide derivatives (BPDs) 1-8 were isolated from the extract of the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae). The cytotoxic activities of BPDs 1-8 were evaluated using a panel of human cancer cell lines. In addition, the SAR analysis and potential anti-invasion activities were investigated. The sp² carbons at C-7 and C-7a appeared to be essential for the cytotoxic activities of BPDs. BPDs 5 and 6 remarkably inhibited the migration and invasion of cancer cells. The anti-invasion activity of dimer 6 was demonstrated to be significantly higher than monomer 5.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Benzofuranos/química , Benzofuranos/toxicidade , Carcinoma Hepatocelular , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade
20.
Oxid Med Cell Longev ; 2015: 391075, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180586

RESUMO

The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD) enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1) resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis. Melinjo (Gnetum gnemon Linn) seed extract (MSE) contains trans-resveratrol (RSV) and resveratrol derivatives, including gnetin C, gnemonoside A, and gnemonoside D. MSE intake also exerts no adverse events in human study. In the present studies, we investigated protective effects of MSE on age-related skin pathologies in mice. Orally MSE and RSV treatment reversed the skin thinning associated with increased oxidative damage in the Sod1 (-/-) mice. Furthermore, MSE and RSV normalized gene expression of Col1a1 and p53 and upregulated gene expression of Sirt1 in skin tissues. In vitro experiments revealed that RSV significantly promoted the viability of Sod1 (-/-) fibroblasts. These finding demonstrated that RSV in MSE stably suppressed an intrinsic superoxide generation in vivo and in vitro leading to protecting skin damages. RSV derivative-rich MSE may be a powerful food of treatment for age-related skin diseases caused by oxidative damages.


Assuntos
Pele/efeitos dos fármacos , Estilbenos/toxicidade , Superóxido Dismutase/genética , Animais , Benzofuranos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Gnetum/química , Gnetum/metabolismo , Camundongos , Camundongos Knockout , Extratos Vegetais/química , Resveratrol , Sementes/química , Sementes/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Pele/metabolismo , Pele/patologia , Estilbenos/química , Superóxido Dismutase/deficiência , Superóxido Dismutase-1 , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA