Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599826

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Assuntos
Berberina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudos de Casos e Controles , Coptis chinensis , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma
2.
J Nat Med ; 78(3): 590-598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573419

RESUMO

Baicalin and berberine are biologically active constituents of the crude drugs Scutellaria root and Coptis rhizome/Phellodendron bark, respectively. Baicalin and berberine are reported to combine together as a 1:1 complex that forms yellow precipitates by electrostatic interaction in decoctions of Kampo formulae containing these crude drugs. However, the structural basis and mechanism for the precipitate formation of this compound-compound interaction in aqueous solution remains unclarified. Herein, we searched for berberine derivatives in the Coptis rhizome that interact with baicalin and identified the chemical structures involved in the precipitation formation. Precipitation assays showed that baicalin formed precipitates with berberine and coptisine but not with palmatine and epiberberine. Thus, the 2,3-methylenedioxy structure may be crucial to the formation of the precipitates, and electrostatic interaction is necessary but is not sufficient. In this multicomponent system experiment, palmatine formed a dissociable complex with baicalin and may competitively inhibit the formation of berberine and coptisine precipitation with baicalin. Therefore, the precipitation formed by berberine and baicalin was considered to be caused by the aggregation of the berberine-baicalin complex, and the 2,3-methylenedioxy structure is likely crucial to the aggregation of the complex.


Assuntos
Berberina , Flavonoides , Berberina/química , Berberina/análogos & derivados , Flavonoides/química , Alcaloides de Berberina/química , Coptis/química , Água/química , Estrutura Molecular , Rizoma/química
3.
J Ethnopharmacol ; 327: 118039, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479545

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The anti-tumor related diseases of Coptidis Rhizoma (Huanglian) were correlated with its traditional use of removing damp-heat, clearing internal fire, and counteracting toxicity. In the recent years, Coptidis Rhizoma and its components have drawn extensive attention toward their anti-tumor related diseases. Besides, Coptidis Rhizoma is traditionally used as an anti-inflammatory herb. Epiberberine (EPI) is a significant alkaloid isolated from Coptidis Rhizoma, and exhibits multiple pharmacological activities including anti-inflammatory. However, the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis has not been demonstrated clearly. AIM OF THE STUDY: Bone metastatic breast cancer can lead to osteolysis via inflammatory factors-induced osteoclast differentiation and function. In this study, we try to analyze the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis. METHODS: To evaluate whether epiberberine could suppress bone metastatic breast cancer-induced osteolytic damage, healthy female Balb/c mice were intratibially injected with murine triple-negative breast cancer 4T1 cells. Then, we examined the inhibitory effect and underlying mechanism of epiberberine on breast cancer-induced osteoclastogenesis in vitro. Xenograft assay was used to study the effect of epiberberine on breast cancer cells in vivo. Moreover, we also studied the inhibitory effects and underlying mechanisms of epiberberine on RANKL-induced osteoclast differentiation and function in vitro. RESULTS: The results show that epiberberine displayed potential therapeutic effects on breast cancer-induced osteolytic damage. Besides, our results show that epiberberine inhibited breast cancer cells-induced osteoclast differentiation and function by inhibiting secreted inflammatory cytokines such as IL-8. Importantly, we found that epiberberine directly inhibited RANKL-induced differentiation and function of osteoclast without cytotoxicity. Mechanistically, epiberberine inhibited RANKL-induced osteoclastogensis via Akt/c-Fos signaling pathway. Furthermore, epiberberine combined with docetaxel effectively protected against bone loss induced by metastatic breast cancer cells. CONCLUSIONS: Our findings suggested that epiberberine may be a promising natural compound for treating bone metastatic breast cancer-induced osteolytic damage by inhibiting IL-8 and is worthy of further exploration in preclinical and clinical trials.


Assuntos
Berberina/análogos & derivados , Neoplasias Ósseas , Neoplasias da Mama , Medicamentos de Ervas Chinesas , Osteólise , Humanos , Feminino , Animais , Camundongos , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Osteólise/patologia , Neoplasias da Mama/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismo , Interleucina-8/metabolismo , Osteoclastos , Osteogênese , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Anti-Inflamatórios/farmacologia , Ligante RANK/metabolismo
4.
Phytomedicine ; 128: 155517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518650

RESUMO

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Assuntos
Berberina , Microbioma Gastrointestinal , Fenilacetatos , Trombose , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Berberina/farmacologia , Berberina/análogos & derivados , Trombose/prevenção & controle , Masculino , Camundongos , Fenilacetatos/farmacologia , Carragenina , Coptis/química , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , RNA Ribossômico 16S
5.
J Ethnopharmacol ; 327: 117931, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382657

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phytochemical compounds offer a distinctive edge in diabetes management, attributed to their multifaceted target mechanisms and minimal toxicological profiles. Epiberberine (EPI), an alkaloid derived from plants of the Rhizoma Coptidis, has been reported to have antidiabetic effects. However, the underlying molecular mechanism of EPI are not fully elucidated. AIM OF THE STUDY: This study explored the anti-diabetic effects of EPI and the role of the NRF2/AMPK signaling pathway in improving insulin resistance. MATERIALS AND METHODS: We utilized two distinct models: in vivo, we employed mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet (HFD) and streptozotocin (STZ) to conduct a range of assessments including measuring physical parameters, conducting biochemical analyses, examining histopathology, and performing Western blot tests. In parallel, in vitro experiments were carried out using insulin resistance (IR)-HepG2 cells, through which we conducted a CCK8 assay, glucose uptake tests, Western blot analyses, and flow cytometry studies. RESULTS: In the EPI-treated group of T2DM mice, there was a significant reduction in hyperglycemia, IR, and hyperlipidemia, accompanied by beneficial changes in the liver and pancreas, as well as enhanced glucose uptake in IR-HepG2 cells. Herein, our finding also provided evidence that EPI could increase the expression of GLUT4 and activated the IRS-1/PI3K/AKT insulin signaling pathway to improve IR in vitro and in vivo. Moreover, EPI alleviated oxidative stress by enhancing SOD and GPX-px activity, decreasing reactive oxygen species (ROS) and malondialdehyde (MDA) content, and promoting nuclear factor (erythroid-derived 2)-like 2 (NRF2), total NRF2, NAD(P)H-quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) expression in the liver tissue of T2DM mice and IR-HepG2 cells. Furthermore, EPI decreased oxidative stress and improved IR, but these benefits were nullified by siNRF2 transfection. In particular, AMP-activated protein kinase (AMPK) deficiency by short-hairpin RNA (shRNA) partially reversed the effects of EPI on nuclear transcription, oxidative stress, and IR of NRF2 in IR-HepG2 cells. CONCLUSIONS: Taken together, EPI activated NRF2-dependent AMPK cascade to protect T2DM from oxidative stress, thereby alleviating IR.


Assuntos
Berberina/análogos & derivados , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Hep G2 , Estresse Oxidativo , Glucose/metabolismo
6.
Cell Signal ; 116: 111053, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38224723

RESUMO

Colorectal cancer (CRC) is the third most common cancer in the world with high mortality rate. EHLJ7 is a quaternary coptisine derivative synthesized by our institute. In this study, the role and mechanism of EHLJ7 on CRC are further elucidated. Using target fishing, colon cancer-associated target screening and molecular docking analysis, PI3K/AKT pathway was selected for the target of EHLJ7 at CRC. Results of Flow cytometry, wound healing assay and transwell migration assay confirmed that EHLJ7 could inhibit migration and apoptosis of colon cancer cells by specifically inhibiting PI3K/AKT pathway in vitro. Xenograft tumor models and a newly established azoxymethane (AOM)/dextran sulfate sodium (DSS)/Peptostreptococcus anaerobiu (P.anaerobius)-induced CRC mouse model are applied to access the anti-cancer action and mechanism of EHLJ7 using western-blot, immunohistochemistry and analysis of exosomes. The key findings in this study are listed as follows: (1) EHLJ7 exerts superior anti-tumor effect with good safety on Xenograft tumor model and CRC model; (2) EHLJ7 exerted its anti-CRC effect by specifically inhibiting PI3K/AKT pathway and apoptosis in vivo and in vitro. In summary, we demonstrated that EHLJ7 exerts therapeutic effect against CRC by PI3K/AKT pathway, which made it possible as a potentially effective compound for the treatment of CRC.


Assuntos
Berberina/análogos & derivados , Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Neoplasias Colorretais/patologia
7.
Int Immunopharmacol ; 128: 111433, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181676

RESUMO

OBJECTIVE: Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS: FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS: Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.


Assuntos
Artrite Reumatoide , Berberina/análogos & derivados , Sinoviócitos , Humanos , Camundongos , Animais , Agressão , Movimento Celular , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial/patologia , Proliferação de Células , Fibroblastos , Células Cultivadas
8.
Phytomedicine ; 123: 155198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006806

RESUMO

BACKGROUND AND PURPOSE: Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS: To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS: Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -ß3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION: This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.


Assuntos
Berberina/análogos & derivados , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/genética , Proliferação de Células , Linhagem Celular Tumoral , Receptores de GABA/metabolismo , Proteína Supressora de Tumor p53 , Simulação de Acoplamento Molecular , Pontos de Checagem da Fase G2 do Ciclo Celular , Apoptose
9.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142236

RESUMO

Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)-methanol (MeOH)-water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.


Assuntos
Alcaloides , Alcaloides de Berberina , Berberina , Coptis , Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Alcaloides/análise , Alcaloides/farmacologia , Animais , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Bromodesoxiuridina , Clorofórmio , Cisplatino , Coptis/química , Coptis chinensis , Medicamentos de Ervas Chinesas/química , Ácido Clorídrico , Isoquinolinas , Metanol , Solventes , Neoplasias Gástricas/tratamento farmacológico , Água , Peixe-Zebra
10.
J Ethnopharmacol ; 298: 115529, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835345

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Obesity is closely related to diabetes. Jatrorrhizine (JAT) from Rhizoma Coptidis (RC) can reduce blood glucose and lipid levels. However, the molecular mechanisms for JAT's anti-obesity effect are still not clear. AIM OF THE STUDY: To explore the effect of JAT in the treatment of obesity and the underlying molecular mechanisms. MATERIALS AND METHODS: db/db mice were used as a typical obese animal model in current study. The anti-obesity effects of five alkaloids from RC were compared by feeding the mice for 8 weeks with a dosage of 105 mg/kg while the dose-dependent study (35 mg/kg and 105 mg/kg) of JAT on obese mice was conducted in another 8-week-long animal experiment. Meanwhile, RNA-seq analysis, in vitro experiments, and western blotting were utilized to predict and confirm the potential pathway that JAT participated in improving obesity. RESULTS: The experimental results demonstrated that five RC alkaloids caused different degrees of weight loss in db/db obese mice. Among them, JAT showed the best effect. It could significantly reduce the body weight, blood lipid levels, and epididymal fat weight of db/db mice. H&E and Oil red O staining results showed that it could also dramatically improve liver lipid metabolism. The results from RNA-seq suggested that JAT had significantly altered 207 DEGs for the treatment of obesity, among which IRS1 changed the most. Next, GO and KEGG analysis enriched four major lipid metabolism-related pathways: biosynthesis of unsaturated fatty acids, PI3K-AKT signaling pathway, metabolic pathways, and fatty acid elongation. Finally, in vitro experiments and western blotting proved that JAT regulated the expression of IRS1/PI3K/AKT pathway-related proteins in a dose-dependent manner to address obesity. CONCLUSIONS: In conclusion, JAT from RC has an effect on treating obesity, and its anti-obesity effect may be exerted via the IRS1/PI3K/AKT signaling pathway.


Assuntos
Alcaloides , Antineoplásicos , Medicamentos de Ervas Chinesas , Animais , Berberina/análogos & derivados , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Lipídeos , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
11.
Mol Biol Rep ; 49(10): 10101-10113, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35657450

RESUMO

INTRODUCTION: Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS: A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION: This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.


Assuntos
Alcaloides , Berberina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP , Anti-Inflamatórios , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Berberina/análogos & derivados , Berberina/farmacologia , Berberina/uso terapêutico , Humanos , NF-kappa B/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885971

RESUMO

Rhizoma Coptidis (RC) is a widely used traditional Chinese medicine. Although modern research has found that some alkaloids from RC are the pharmacologically active constituents, the differences in their biological effects are not completely clear. This study analyzed the differences in the typical alkaloids in RC at a systematic level and provided comprehensive information on the pharmaceutical mechanisms of the different alkaloids. The ethanol RC extract (RCE) was characterized using HPLC assay. HepG2, 3T3-L1, and RAW264.7 cells were used to detect the cytotoxicity of alkaloids. Transcriptome analyses were performed to elucidate the cellular pathways affected by RCE and alkaloids. HPLC analysis revealed that the typical alkaloids of RCE were berberine, coptisine, and palmatine. Coptisine and berberine displayed a stronger inhibitory effect on cell proliferation than palmatine. The overlapping ratios of differentially expressed genes between RCE and berberine, coptisine, and palmatine were 70.8%, 52.6%, and 42.1%, respectively. Pathway clustering analysis indicated that berberine and coptisine possessed a certain similarity to RCE, and both compounds affected the cell cycle pathway; moreover, some pathways were uniquely enriched by berberine or coptisine. Berberine and coptisine had different regulatory effects on genes involved in lipid metabolism. These results provide comprehensive information on the pharmaceutical mechanisms of the different RC alkaloids and insights into their better combinatory use for the treatment of diseases.


Assuntos
Alcaloides de Berberina/farmacologia , Berberina/análogos & derivados , Coptis chinensis/química , Coptis/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Rizoma/química , Células 3T3-L1 , Animais , Berberina/análise , Berberina/farmacologia , Alcaloides de Berberina/análise , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
13.
Phytomedicine ; 91: 153678, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385092

RESUMO

BACKGROUND: Demethyleneberberine (DMB) is a natural active component of medicinal plant Cortex phellodendri chinensis with favorable bioactivity. However, the role of DMB in suppressing non-small cell lung cancer (NSCLC) remains unknown. PURPOSE: In this study, we aimed to examine the effect and underlying mechanism of DMB in suppressing NSCLC. METHODS: CCK8 assay and colony formation assay were utilized to assess the efficiency of DMB on the viability and colony formation capacity of NSCLC cells. Flow cytometry and ß-Galactosidase Staining Kit were utilized to determine the efficiency of DMB on the cell cycle and cellular senescence of NSCLC cells. RT-qPCR and Western blot were used to detect the effect of DMB on cell cycle and cellular senescence related gene and protein expression of NSCLC cells. In vivo tumor model was established to evaluate the anti NSCLC effect of DMB. In addition, RNA-seq analysis was performed to detect the differential gene expression after DMB treatments. RESULTS: In this study, we revealed that DMB exhibits efficient inhibitory effect on NSCLC cell proliferation and tumor xenografts growth in vivo. We also demonstrated that DMB could inhibit cell migration by suppressing epithelial-mesenchymal transition (EMT) and trigger cell cycle arrest by down-regulating the expression of cell cycle related genes in NSCLC cells. In addition, DMB treatment efficiently induces cellular senescence of NSCLC cells. From the RNA-seq analysis, we found that DMB accelerates senescence through suppressing HIF-1α expression, which was further elucidated by overexpressing HIF-1α in NSCLC to reduce the inhibitory effect of DMB. Furthermore, we also revealed that DMB decreases the expression of c-Myc, an up-stream protein of HIF-1α. CONCLUSIONS: Taken together, we first report that DMB inhibits NSCLC progress through inducing cell cycle arrest and triggering cellular senescence by downregulating c-Myc/HIF-1α pathway.


Assuntos
Berberina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Berberina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Med Hypotheses ; 153: 110639, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34229236

RESUMO

Huntington disease (HD) is a type of neurodegenerative disease that is characterized by presence of multiple repeats (more than 36) of cytosine-adenine-guanine (CAG) trinucleotides and mutated huntingtin (mHtt). This can further lead to oxidative stress, enhancement in level of ROS/RNS, mitochondrial dysfunction and neuroinflammations. Many clinical and preclinical trials have been conducted so far for the effective treatment of HD however, none of the drugs has shown complete relief. The regeneration of neurons is a very complicated process and associated with multiple pathological pathways. Hence, finding a unique solution using single drug that could act on multiple pathological pathways is really cumbersome. In the proposed hypothesis the use of demethyleneberberine (DMB) as a potential anti-HD agent has been explained. It is a metabolite of berberine and reported to act on multiple mechanistic pathways that are responsible for HD. Present article highlights new mechanistic insights through which DMB inhibits ROS/RNS, oxidative stress, mitochondrial dysfunctions and neuroinflammation such as NFκB, TNF-α, IL-6 and IL-8, cytokinin. Further its action on cellular apoptosis and neuronal cell death are also reported.


Assuntos
Berberina , Doença de Huntington , Doenças Neurodegenerativas , Berberina/análogos & derivados , Berberina/uso terapêutico , Humanos , Doença de Huntington/tratamento farmacológico , Estresse Oxidativo
15.
Phytomedicine ; 90: 153631, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34253428

RESUMO

BACKGROUND: As a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out. PURPOSE: To explore the protective role and underlying mechanism of DHBB on a model of colitis. METHODS: Acute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR. RESULTS: DHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway. CONCLUSION: These results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.


Assuntos
Berberina , Colite Ulcerativa , Animais , Berberina/análogos & derivados , Berberina/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Isoquinolinas , Camundongos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Compostos Fitoquímicos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like
16.
J Mol Model ; 27(8): 231, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312718

RESUMO

The Retinoid X Receptor (RXR) is an attractive target in the treatment of colon cancer. Different therapeutic binders with high potency have been used to specifically target RXR. Among these compounds is a novel analogue of berberine, B12. We provided structural and molecular insights into the therapeutic activity properties of B12 relative to its parent compound, berberine, using force field estimations and thermodynamic calculations. Upon binding of B12 to RXR, the high instability elicited by RXR was markedly reduced; similar observation was seen in the berberine-bound RXR. However, our analysis revealed that B12 could have a more stabilizing effect on RXR when compared to berberine. Interestingly, the mechanistic behaviour of B12 in the active site of RXR opposed its impact on RXR protein. This disparity could be due to the bond formation and breaking elicited between B12/berberine and the active site residues. We observed that B12 and berberine could induce a disparate conformational change in regions Gly250-Asp258 located on the His-RXRα/LBD domain. Comparatively, the high agonistic and activation potential reported for B12 compared to berberine might be due to its superior binding affinity as evidenced in the thermodynamic estimations. The total affinity for B12 (-25.76 kcal/mol) was contributed by electrostatic interactions from Glu243 and Glu239. Also, Arg371, which plays a crucial role in the activity of RXR, formed a strong hydrogen bond with B12; however, a weak interaction was elicited between Arg371 and berberine. Taken together, our study has shown the RXRα activating potential of B12, and findings from this study could provide a framework in the future design of RXRα binders specifically tailored in the selective treatment of colon cancer.


Assuntos
Berberina/química , Neoplasias do Colo/tratamento farmacológico , Ligação de Hidrogênio/efeitos dos fármacos , Receptores X de Retinoides/genética , Berberina/análogos & derivados , Berberina/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Neoplasias do Colo/genética , Humanos , Terapia de Alvo Molecular , Conformação Proteica/efeitos dos fármacos , Receptores X de Retinoides/antagonistas & inibidores , Termodinâmica
17.
Sci Rep ; 11(1): 7718, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833336

RESUMO

DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Camptotecina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/genética , Medicina Herbária , Humanos
18.
J Pharm Pharmacol ; 73(6): 709-719, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33822109

RESUMO

OBJECTIVES: Jatrorrhizine is an isoquinoline alkaloid found in medicinal plants. It is the main bioactive compound of the Chinese herbs, Coptis chinensis, Rhizoma coptidis, and Phellodendron chinense Schneid, plants that are predominantly used in traditional Chinese medicine (TCM) for the treatment of metabolic disorders, gastritis, stomachache among a host of others. This manuscript aims to provide a comprehensive review of the pharmacological effects of jatrorrhizine, proffer suggestions on research areas that need redress and potentially serve as a reference for future studies. KEY FINDINGS: Published scientific literature was therefore retrieved from all credible sources including Pubmed, Elsevier, Research Gate, Web of Science, Google Scholar, Science Direct, Europe PMC and Wiley Online library using key words such as 'jatrorrhizine', 'botanical sources', 'pharmacology', 'toxicology', 'pharmacokinetics' or their combinations. A cursory examination of relevant scientific literature using the aforementioned key words produced more than 400 publications. CONCLUSIONS: Using an inclusion/exclusion criteria the subject matter of this review was adequately addressed. It is our hope that this review will provide a good platform for further research on fully harnessing the potential of this bioactive compound.


Assuntos
Berberina/análogos & derivados , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa/métodos , Animais , Berberina/isolamento & purificação , Berberina/farmacologia , Humanos , Plantas Medicinais/química
19.
Phytomedicine ; 83: 153488, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33571918

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a severe microvascular complication of diabetes with prominent morbidity and mortality. At present, there are hardly any effective drugs to treat DN. Epiberberine (EPI), an isoquinoline alkaloid, has attracted considerable attention due to its anti-hyperglycemic, anti-hyperlipidemic, and anti-inflammatory functions. However, whether there is a protective effect of EPI on DN has not been reported. PURPOSE: The research was aimed to investigate the activities of EPI alleviating kidney damage in db/db mice and to explore its possible mechanisms. STUDY DESIGN: The db/db mice and high-glucose (HG) induced glomerular mesangial cells (GMCs) were used to explore the protective effect of EPI on DN in vivo and in vitro. METHODS: The changes in fasting blood glucose, metabolic index, renal function, and histopathological morphology in db/db mice were detected to evaluate the therapeutic effect of EPI. Then, renal transcriptome and molecular docking were used to screen the key targets. Subsequently, HG-induced GMCs through mimicing the pathological changes in DN were utilized to study the renal protective effects of EPI and its potential mechanism. RESULTS: The results in vivo showed that EPI administration for 8 weeks significantly alleviated diabetes-related metabolic disorders, improved renal functions, and relieved the histopathological abnormalities of renal tissue, especially renal fibrosis in db/db mice. The results in vitro showed that EPI inhibited the proliferation and induced the G2/M phase arrest of HG-induced GMCs. Moreover, a key gene Angiotensinogen (Agt) was screen out by the RNA-seq of kidney and molecular docking, and EPI reduced Agt, TGFß1, and Smad2 expression in vitro and in vivo. Noteworthy, Agt knockdown by siRNA significantly attenuated these beneficial efficacies exerted by EPI, indicating that Agt played a crucial role in the process of EPI improving DN. CONCLUSION: These findings suggested that EPI might be a potential drug for the treatment of DN dependent on the Agt-TGFß/Smad2 pathway.


Assuntos
Angiotensinogênio/metabolismo , Berberina/análogos & derivados , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Angiotensinogênio/química , Animais , Berberina/química , Berberina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Camundongos Obesos , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010998

RESUMO

Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8-10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations.


Assuntos
Berberina/análogos & derivados , Berberina/farmacocinética , Glicemia/efeitos dos fármacos , Absorção Gastrointestinal/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Adolescente , Adulto , Área Sob a Curva , Berberina/sangue , Disponibilidade Biológica , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Insulina/sangue , Cinética , Masculino , Refeições , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA