Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602357

RESUMO

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Assuntos
Berberina , Ácido Clorogênico , Osteoporose , Osteoporose/tratamento farmacológico , Animais , Camundongos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Berberina/administração & dosagem , Berberina/farmacocinética , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/administração & dosagem , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
2.
J Nat Med ; 78(3): 590-598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573419

RESUMO

Baicalin and berberine are biologically active constituents of the crude drugs Scutellaria root and Coptis rhizome/Phellodendron bark, respectively. Baicalin and berberine are reported to combine together as a 1:1 complex that forms yellow precipitates by electrostatic interaction in decoctions of Kampo formulae containing these crude drugs. However, the structural basis and mechanism for the precipitate formation of this compound-compound interaction in aqueous solution remains unclarified. Herein, we searched for berberine derivatives in the Coptis rhizome that interact with baicalin and identified the chemical structures involved in the precipitation formation. Precipitation assays showed that baicalin formed precipitates with berberine and coptisine but not with palmatine and epiberberine. Thus, the 2,3-methylenedioxy structure may be crucial to the formation of the precipitates, and electrostatic interaction is necessary but is not sufficient. In this multicomponent system experiment, palmatine formed a dissociable complex with baicalin and may competitively inhibit the formation of berberine and coptisine precipitation with baicalin. Therefore, the precipitation formed by berberine and baicalin was considered to be caused by the aggregation of the berberine-baicalin complex, and the 2,3-methylenedioxy structure is likely crucial to the aggregation of the complex.


Assuntos
Berberina , Flavonoides , Berberina/química , Berberina/análogos & derivados , Flavonoides/química , Alcaloides de Berberina/química , Coptis/química , Água/química , Estrutura Molecular , Rizoma/química
3.
Phytomedicine ; 128: 155258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522318

RESUMO

BACKGROUND: Traditional Chinese Medicine (TCM), renowned for its holistic approach with a 2000-year history of utilizing natural remedies, offers unique advantages in disease prevention and treatment. Berberine, found in various Chinese herbs, has been employed for many years, primarily for addressing conditions such as diarrhea and dysentery. Berberine has recently become a research focus owing to its pharmacological activities and benefits to human bodies. However, little is known about the anti-inflammatory mechanism of berberine. PURPOSE: To summarize recent findings regarding the pharmacological effects and mechanisms of berberine anti-inflammation and highlight and predict the potential therapeutic effects and systematic mechanism of berberine. METHODS: Recent studies (2013-2023) on the pharmacological effects and mechanisms of berberine anti-inflammation were retrieved from Web of Science, PubMed, Google Scholar, and Scopus up to July 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were employed to predict the therapeutic effects and mechanisms of berberine against potential diseases. RESULTS: The related pharmacological mechanisms of berberine anti-inflammation include the inhibition of inflammatory cytokine production (e.g., IL-1ß, IL-6, TNF-α), thereby attenuating the inflammatory response; Inhibiting the activation of NF-κB signaling pathway and IκBα degradation; Inhibiting the activation of MAPK signaling pathway; Enhancing the activation of the STAT1 signaling pathway; Berberine interacts directly with cell membranes through a variety of pathways, thereby influencing cellular physiological activities. Berberine enhances human immunity and modulates immune system function, which is integral to addressing certain autoimmune and tumour-related health concerns. CONCLUSION: This study expounds on the correlation between berberine and inflammatory diseases, encapsulating the mechanisms through which berberine treats select typical inflammatory ailments. Furthermore, it delves into a deeper understanding of berberine's effectiveness by integrating network pharmacology and molecular docking techniques in the context of treating inflammatory diseases. It provides guidance and reference for berberine's subsequent revelation of the modern scientific connotation of Chinese medicine.


Assuntos
Anti-Inflamatórios , Berberina , Inflamação , Farmacologia em Rede , Animais , Humanos , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Berberina/química , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37574837

RESUMO

Four organic-polyoxometalate hybrids BR4[SiW12O40] (BR-SiW), BR3[PMo12O40] (BR-PMo), BR4K[EuSiW11O40]·2H2O (BR-EuSiW) and BR6Na3[EuW10O36] (BR-EuW) were fabricated by the polyoxometalates (POMs) anions and berberine cations (BR) noted for the alkaloids in traditional Chinese herbal medicine. These hybrids have been characterized and confirmed. The interaction between hybrids and human serum albumin (HSA) was investigated in a buffer solution (pH 7.4) using ultraviolet-visible light absorption and fluorescence techniques. The classical Stern-Volmer equation was used to analyze the fluorescence quenching at three temperatures (296, 303 and 310 K), and the static quenching mechanism for interaction was proposed. The Thermodynamic parameters, enthalpy, entropy change, and Gibbs free energy of hybrids interacting on HSA were calculated by Scatchard equation. The results indicated that therewas one binding site on the protein and BR-POMs all showed stronger binding force than that of raw materials. Synchronous fluorescence results showed that the binding sites of BR-POMs and HSA were not effectively affected the surrounding microenvironment. The following antibacterial experiments implied that inhibitory effect of hybrids were synergistic effect from organic active ingredient and POMs but the simple combination. All these data were prepared for further research on biology.


Assuntos
Berberina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/metabolismo , Berberina/farmacologia , Berberina/química , Albumina Sérica/química , Albumina Sérica/metabolismo , Espectrometria de Fluorescência/métodos , Ligação Proteica , Sítios de Ligação , Ânions , Termodinâmica , Antibacterianos/farmacologia
5.
Chem Biodivers ; 20(12): e202301461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37961037

RESUMO

Precipitate generation is a challenging issue during the production of herbal decoction as it affects the stability and bioavailability of active compounds. Here we explored the composition of the natural precipitate formed from and its effect on drug release of Scutellaria baicalensis-Coptis chinensis paired extract (SCPE). Furthermore, the surface morphology of the SCPE precipitate was also investigated. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to chemical component analysis and field emission scanning electron microscope (FE-SEM) was performed to particle observation. Baicalin (BA), berberine (BBR) and starch-arginine-rich polymers were abundant in the SCPE precipitate. FE-SEM micrographs showed spheroidal shaped particles in the SCPE supernatant, while spherical and porous tissue-shaped particles in the SCPE precipitate. In vitro drug release of baicalin and berberine contained in the precipitate may increase as the polymer is removed. The presence of polymer-related interactions were confirmed by the greater increase in solubility of baicalin upon addition of arginine and polymer. This was also supported by the solubility decrease of the BA-BBR complex in polymer solution and the gelation of the BA-BBR complex in arginine solution. Our results provide a scientific basis for elucidating the pharmaceutical properties of the decoction of S. baicalensis-C. chinensis-based herbal medicine.


Assuntos
Berberina , Coptis , Medicamentos de Ervas Chinesas , Arginina , Berberina/análise , Berberina/química , Cromatografia Líquida , Coptis/química , Coptis chinensis , Liberação Controlada de Fármacos , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais , Polímeros , Scutellaria baicalensis/química , Espectrometria de Massas em Tandem
6.
Curr Pharm Des ; 29(38): 3050-3059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37961862

RESUMO

BACKGROUND: Berberine (BBR), an Eastern traditional medicine, has expressed novel therapeutic activities, especially for chronic diseases like diabetes, hyperlipemia, hypertension, and Alzheimer's disease. However, the low oral bioavailability of BBR has limited the applications of these treatments. Hence, BBRloaded solid lipid nanoparticles (BBR-SLNs) were prepared to improve BBR absorption into systemic circulations via this route. METHODS: BBR-loaded solid lipid nanoparticles (BBR-SLNs) were prepared by ultrasonication and then transformed into solid form via spray drying technique. The size morphology of BBR-SLNs was evaluated by dynamic light scattering (DLS) and scanning electron microscope (SEM). Crystallinity of BBR and interaction of BBR with other excipients were checked by spectroscopic methods. Entrapment efficiency of BBR-SLNs as well as BBR release in gastrointestinal conditions were also taken into account. Lastly, SLN's cytotoxicity for loading BBR was determined with human embryonic kidney cells (HEK293). RESULTS: Stearic acid (SA), glyceryl monostearate (GMS), and poloxamer 407 (P407) were selected for BBRSLNs fabrication. BBR-SLNs had homogenous particle sizes of less than 200 nm, high encapsulation efficiency of nearly 90% and loading capacity of above 12%. BBR-SLN powder could be redispersed without significant changes in physicochemical properties and was stable for 30 days. Spray-dried BBR-SLNs showed a better sustained in vitro release profile than BBR-SLNs suspension and BBR during the initial period, followed by complete dissolution of BBR over 24 hours. Notably, cell viability on HEK293 even increased up to 150% compared to the control sample at 100 µg/mL BBR-unloaded SLNs. CONCLUSION: Hence, SLNs may reveal a promising drug delivery system to broaden BBR treatment for oral administration.


Assuntos
Berberina , Nanopartículas , Humanos , Lipídeos/química , Berberina/química , Disponibilidade Biológica , Células HEK293 , Nanopartículas/química , Administração Oral , Tamanho da Partícula , Portadores de Fármacos/química
7.
Phytomedicine ; 121: 155081, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748390

RESUMO

BACKGROUND: Dry eye disease (DED) is a multifactorial disease in ocular surface, and inflammation plays an etiological role. Berberine (BBR) has shown efficacy in treating inflammatory diseases. Yet, there was no adequate information related to the therapeutic effects of BBR for DED. PURPOSE: To detect the effects and explore the potential mechanisms of BBR on DED. STUDY DESIGN: In vitro, in vivo study and network pharmacology analysis were involved. METHOD: The human corneal epithelium cells viability was evaluated with different concentrations of BBR. Dry eye murine model was established by exposing to the desiccating stress, and Ciclosporin (CSA), BBR eye drops or vehicle were topical administration for 7 days. The phenol red cotton tests, Oregon-green-dextran staining and Periodic acid-Schiff staining were performed and evaluated the dry eye after treatment. Inflammation and apoptosis levels of ocular surface were quantified. The potential targets related to berberine and dry eye were collected from databases. The Protein-Protein interaction network analysis and GO & KEGG enrichment analysis were realized by STRING database, Metascape platform and Cytoscape software to find core targets and signaling pathways. The SchrÖdinger software was used to molecular docking and PyMOL software to visualization. Finally, the levels of PI3K/AKT/NFκB and MAPK pathways were detected. RESULT: The data revealed BBR could rescue impaired HCE under hyperosmotic conditions. In addition, BBR eye drops could ameliorate dry eye. And BBR eye drops suppressed the inflammatory factors and CD4+T cells infiltration in conjunctiva. Besides, BBR eye drops protected ocular surface by avoiding the severe apoptosis and decreasing the level of MMP-3 and MMP-9. 148 common targets intersection between BBR and dry eye were found via network pharmacology analysis. Core proteins and core pathways were identified through PPI and GO&KEGG enrichment analysis. Molecular docking displayed excellent binding between BBR and those core targets. Finally, in vivo study verified that BBR eye drops had a therapeutic effect in dry eye by inhibiting PI3K/AKT/NFκB and MAPK pathways. CONCLUSION: The research provided convincing evidence that BBR could be a candidate drug for dry eye.


Assuntos
Berberina , Síndromes do Olho Seco , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Berberina/química , Simulação de Acoplamento Molecular , Apoptose , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo
8.
Med Chem ; 19(9): 823-837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37016520

RESUMO

Berberine (BBR) is a quaternary ammonium alkaloid isolated from the Traditional Chinese Medicine Coptis chinensis. It possesses a plethora of pharmacological activities because its unique structure properties make it readily interact with macromolecules through π-π stacking and electrostatic interaction. Its anti-tumor effects are receiving more and more attention in recent years. Cytotoxicity and anti-proliferation are the important anti-tumor modes of BBR, which have been studied by many research groups. This study aims to review the structural modifications of BBR and its cytotoxic derivatives. Also, to study the corresponding structure-activity relationship. BBR showed potential activities toward tumor cells, however, its modest activity and poor physicochemical properties hindered its application in clinical. Structural modification is a common and effective approach to improve BBR's cytotoxic or anti-proliferative activities. The structural modifications of BBR, the cytotoxic or anti-proliferative activities of its derivatives, and the corresponding structure-activity relationship (SAR) were summarized in the review. The concluded SAR of BBR derivatives with their cytotoxic or anti-proliferative activities will provide great prospects for the future anti-tumor drug design with BBR as the lead compound.


Assuntos
Antineoplásicos , Berberina , Berberina/farmacologia , Berberina/química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química
9.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982749

RESUMO

Medicinal plants belonging to the genus Berberis may be considered an interesting source of drugs to counteract the problem of antimicrobial multiresistance. The important properties associated with this genus are mainly due to the presence of berberine, an alkaloid with a benzyltetrahydroisoquinoline structure. Berberine is active against both Gram-negative and Gram-positive bacteria, influencing DNA duplication, RNA transcription, protein synthesis, and the integrity of the cell surface structure. Countless studies have shown the enhancement of these beneficial effects following the synthesis of different berberine analogues. Recently, a possible interaction between berberine derivatives and the FtsZ protein was predicted through molecular docking simulations. FtsZ is a highly conserved protein essential for the first step of cell division in bacteria. The importance of FtsZ for the growth of numerous bacterial species and its high conservation make it a perfect candidate for the development of broad-spectrum inhibitors. In this work, we investigate the inhibition mechanisms of the recombinant FtsZ of Escherichia coli by different N-arylmethyl benzodioxolethylamines as berberine simplified analogues appropriately designed to evaluate the effect of structural changes on the interaction with the enzyme. All the compounds determine the inhibition of FtsZ GTPase activity by different mechanisms. The tertiary amine 1c proved to be the best competitive inhibitor, as it causes a remarkable increase in FtsZ Km (at 40 µM) and a drastic reduction in its assembly capabilities. Moreover, a fluorescence spectroscopic analysis carried out on 1c demonstrated its strong interaction with FtsZ (Kd = 26.6 nM). The in vitro results were in agreement with docking simulation studies.


Assuntos
Berberina , Proteínas do Citoesqueleto , Proteínas do Citoesqueleto/metabolismo , Simulação de Acoplamento Molecular , Berberina/química , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/metabolismo , Antibacterianos/farmacologia
10.
Drug Dev Ind Pharm ; 49(2): 189-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36971392

RESUMO

OBJECTIVE: The aim was to develop a nanoscale drug delivery system with enzyme responsive and acid sensitive particle size and intelligent degradation aiming to research the inhibitory effect on breast cancer. SIGNIFICANCE: The delivery system addressed the problems of tissue targeting, cellular internalization, and slow drug release at the target site, which could improve the efficiency of drug delivery and provide a feasible therapeutic approach for breast cancer. METHODS: The acid sensitive functional material DSPE-PEG2000-dyn-PEG-R9 was synthesized by Michael addition reaction. Then, the berberine plus baicalin intelligent micelles were prepared by thin-film hydration. Subsequently, we characterized the physical and chemical properties of berberine plus baicalin intelligent micelles, evaluated its anti-tumor effects in vivo and in vitro. RESULTS: The target molecule was successfully synthesized, and the intelligent micelles showed excellent chemical and physical properties, delayed drug release and high encapsulation efficiency. In vitro and in vivo experiments also confirmed that the intelligent micelles could effectively target tumor sites, penetrate tumor tissues, enrich in tumor cells, inhibit tumor cell proliferation, inhibit tumor cell invasion and migration, and induce tumor cell apoptosis. CONCLUSION: Berberine plus baicalin intelligent micelles have excellent anti-tumor effects and no toxicity to normal tissues, which provides a new potential drug delivery strategy for the treatment of breast cancer.


Assuntos
Antineoplásicos , Berberina , Neoplasias da Mama , Humanos , Feminino , Micelas , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Berberina/farmacologia , Berberina/química , Berberina/uso terapêutico , Tamanho da Partícula , Linhagem Celular Tumoral , Portadores de Fármacos/química
11.
Int J Pharm ; 630: 122458, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462740

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disease caused by multiple factors. Single-target drugs have limited efficacy for AD treatment. Therefore, multi-target intervention strategy has great potential. Traditional Chinese medicine (TCM) is mostly used in the form of compound prescription, which has the polypharmacology behavior. Rhizoma Coptidis and Radix et Rhizoma Rhei are frequently used as the couplet medicines of TCM for AD therapy. In this study, the novel carrier-free nanoassembly with 3D-porous frame crystal structure has formulated from supramolecular self-assembly of berberine (BER) and rhein (RHE), the main active components of Rhizoma Coptidis and Radix et Rhizoma Rhei, respectively. Combining with the spectral data and single crystal structure, the self-assembly process was clarified as dominated by electrostatic interaction and π-π stacking. In vitro release property, cholinesterase (ChE) inhibition, ß-amyloid (Aß) aggregation regulation, radical elimination, metal ions chelation and cytotoxicity assay indicated that the obtained BER-RHE assembly had the Fickian diffusion-controlled sustained release ability, synergistic biological activities and virtually no neurotoxicity. In addition, in vivo reactive oxygen species (ROS) level evaluation showed that the assembly could reduce the accumulation of intracellular ROS in Caenorhabditis elegans (C. elegans). Meanwhile, BER-RHE assembly could also be used as a novel potential carrier for drug delivery due to its superior 3D-porous frame. This green and facile strategy for carrier-free nanoassembly microscopic construction via supramolecular self-assembly might provide inspiration for the development of multi-target therapy for AD and the design of the novel drug delivery system.


Assuntos
Doença de Alzheimer , Berberina , Medicamentos de Ervas Chinesas , Doenças Neurodegenerativas , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Berberina/química , Caenorhabditis elegans , Medicamentos de Ervas Chinesas/química , Porosidade , Espécies Reativas de Oxigênio , Rizoma
12.
Cells ; 11(21)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359829

RESUMO

Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.


Assuntos
Antineoplásicos , Berberina , Neoplasias Pulmonares , Humanos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células , Microambiente Tumoral
13.
Artigo em Inglês | MEDLINE | ID: mdl-35134664

RESUMO

Lubricating oils are composed of base oils (>85% v/v) and enriching additives (<15% v/v). Three types of base oils may be distinguished: 1) traditional bases (obtained by low-volatile fractions from crude oil distillation refining), 2) synthetic bases (mainly poly-alpha-olefins, sometimes esters, especially succinic acid esters), 3) bases of natural origin (especially obtained from refined plant oils). The bases of natural origin are the only ones recommended for application when lubricating oil may be emitted to the environment (e.g. when the machine with an open cutting system is used). Group-type separation and analysis of group-type composition of base and lubricating oils are of significant importance in quality control and environmental monitoring. Due to the potentially wide range of polarity of the components of base and lubricating oils, group- type separation becomes a difficult separation problem. It is also a serious analytical problem due to the considerable diversity of physicochemical properties. The authors propose a new procedure for the separation and determination of the group-type composition of base and lubricating oils using thin-layer liquid chromatography in normal phase systems (abr. NP-TLC) on silica gel plates impregnated with berberine salt/in the coupling of thin-layer chromatography with flame ionization detection (abr. TLC-FID). A new, effective procedure of TLC plates impregnation with berberine sulphate was presented. The proposed procedure ensures the visualization of all groups of base oils. Extensive experimental research showed that a 2-step development procedure with application of n-hexane up to 100% height of development +15 min and further n-hexane: isopropanol: tri-fluoroacetic acid 96.25: 3: 0.75 (v: v: v) up to 75% height of development is advantageous for the group-type separation, both in TLC-FID and TLC.


Assuntos
Cromatografia em Camada Fina/métodos , Lubrificantes , Óleos , Petróleo/análise , Berberina/química , Ionização de Chama , Lubrificantes/análise , Lubrificantes/química , Lubrificantes/isolamento & purificação , Óleos/análise , Óleos/química , Óleos/isolamento & purificação
14.
ACS Appl Mater Interfaces ; 14(9): 11177-11191, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35192338

RESUMO

Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Seda/química , Seda/farmacologia , Infecção da Ferida Cirúrgica/prevenção & controle , Suturas , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Berberina/química , Berberina/farmacologia , Berberina/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Quimioterapia Combinada/métodos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Masculino , Fenômenos Físicos , Ratos Sprague-Dawley , Seda/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Infecção da Ferida Cirúrgica/metabolismo , Infecção da Ferida Cirúrgica/patologia
15.
Eur J Pharmacol ; 919: 174769, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151646

RESUMO

Investigation of the synergistic and complementary effects is vital but difficult for Chinese herbal medicine. We explored the synergistic and complementary mechanisms of berberine (BBR) and paeoniflorin (PF) in the treatment of type 2 diabetes mellitus (T2DM) through network pharmacology and molecular docking. We identified putative targets of BBR, PF, and T2DM, and constructed a protein-protein interaction (PPI) network. Gene ontology and Kyoto encyclopedia of gene and genomes pathway enrichment analysis and molecular docking were used to predict the molecular mechanisms. A diabetes model was induced by a high-fat diet to verify the therapeutic effect. Ninety-two targets of BBR + PF in the treatment of T2DM were identified, which were considered as synergistic targets. Fifty-nine complementary targets of BBR-T2DM and 47 of PF-T2DM were identified. PPI network analysis showed that JAK2, ESR1, IFG1R, STAT3, EGFR, MAPK1, and AKT1 are closely related to T2DM. The enrichment analysis further showed that the synergistic targets mainly involved the AGE-RAGE signaling pathway in diabetic complications, FOXO, AMPK, and VEGF signaling pathways, and glycolysis/gluconeogenesis. AKT1, JAK2, and STAT3, which are common targets of the AGE-RAGE signaling pathway in diabetic complications and the FOXO signaling pathway, were chosen for docking with BBR and PF, respectively, and showed good binding activities. BBR + PF significantly reduced weight and fasting blood glucose, and alleviated insulin resistance. Moreover, BBR + PF promoted the phosphorylation of AKT1, JAK2, and STAT3. This study provides information to understand the synergistic and complementary mechanism of BBR + PF against T2DM, and may facilitate the development of new anti-T2DM drugs.


Assuntos
Berberina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Monoterpenos/farmacologia , Animais , Berberina/química , Berberina/uso terapêutico , Glicemia/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/química , Glucosídeos/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Monoterpenos/química , Monoterpenos/uso terapêutico , Farmacologia em Rede , Fitoterapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-35026651

RESUMO

Screening and identification of potential compounds from herbal medicine is a prevailing way to find a lead for the development of innovative drugs. This promotes the development of new methods that are feasible in complex matrices. Here, we described a one-step reversible methodology to immobilize nuclear peroxisome proliferator-activated receptor gamma (PPARγ) onto amino microsphere coated with a DNA strand specifically binding to the receptor. The specific interaction allowed us to achieve the immobilization of PPARγ by mixing the DNA modified microspheres with E. coli lysates expressing the receptor. Characterization of the immobilized receptor was carried out by morphology and binding specificity analysis. Feasibility of immobilized PPARγ in the drug-receptor interaction analysis was performed by an injection amount-dependent method. Besides, immobilized PPARγ was also applied in screening modulators of the receptor from Coptidis Rhizoma extract. The binding of the screened compounds to PPARγ was examined by time-resolved fluorescence resonance energy transfer assay. The results showed that immobilized PPARγ was stable for thirty days with a high-specificity of ligand recognition at the subtype receptor level. Berberine and palmatine were the bioactive compounds of Coptidis Rhizoma specifically binding to PPARγ. The two compounds exhibited half maximal inhibitory concentrations of 4.11 and 2.98 µM during their binding to the receptor. We concluded that the current method is possible to become a common strategy for the immobilization of nuclear receptors, and the immobilized receptor is a high throughput method for recognizing and separating the receptor modulators from complex matrices including herbal medicine.


Assuntos
Coptis chinensis/química , Medicamentos de Ervas Chinesas/química , PPAR gama/química , Berberina/química , Alcaloides de Berberina/química , Transferência Ressonante de Energia de Fluorescência , Medicina Herbária , Humanos , Ligação Proteica
17.
Viruses ; 13(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34960706

RESUMO

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Assuntos
Antivirais/farmacologia , Atovaquona/farmacologia , Berberina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células Epiteliais Alveolares , Animais , Berberina/química , Proliferação de Células/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Proguanil/farmacologia , Células Vero , Vírion/efeitos dos fármacos
18.
Am J Chin Med ; 49(7): 1645-1666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34488551

RESUMO

Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.


Assuntos
Berberina/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Medicina Tradicional Chinesa/métodos , Berberina/química , Humanos , Estrutura Molecular
19.
Food Funct ; 12(18): 8366-8375, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34342315

RESUMO

Berberine, an isoquinoline alkaloid isolated from Coptis chinensis, has been widely studied for its efficacy in the treatment of neurodegenerative diseases. However, the detailed mechanisms are unknown. In this study, the effects of berberine on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease were investigated. We showed that treatment with berberine significantly ameliorates the degeneration of dopaminergic neurons in substantia nigra compacta (SNc) and improves motor impairment in MPTP-treated mice. Berberine also significantly decreased the level of α-synuclein and enhanced the microtubule-associated protein light chain 3 (LC3-II)-associated autophagy in the SN of MPTP-treated mice. Furthermore, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) was activated by berberine. Berberine's actions were abolished by pre-treatment with 3-methyladenine (an autophagy inhibitor) or compound c (an AMPK inhibitor) in the MPP+-treated SH-SY5Y cells. These results suggested that the protective effects of berberine on the toxicity of MPTP could be attributed to berberine-enhanced autophagy via the AMPK dependent pathway.


Assuntos
Autofagia/efeitos dos fármacos , Berberina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Animais , Berberina/química , Linhagem Celular Tumoral , Sobrevivência Celular , Coptis chinensis/química , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34343700

RESUMO

Berberine is a famous alkaloid extracted from Berberis plants and has been widely used as medications and functional food additives. Recent studies reveal that berberine exhibits neuroprotective activity in animal models of Parkinson's disease (PD), the second most prevalent neurodegenerative disorders all over the world. However, the actual site of anti-PD action of berberine remains largely unknown. To this end, we employed a fluorescently labeled berberine derivative BBRP to investigate the subcellular localization and blood brain barrier (BBB) permeability in a cellular model of PD and zebrafish PD model. Biological investigations revealed that BBRP retained the neuroprotective activity of berberine against PD-like symptoms in PC12 cells and zebrafish, such as protecting 6-OHDA induced cell death, relieving MPTP induced PD-like behavior and increasing dopaminergic neuron loss in zebrafish. We also found that BBRP could readily penetrate BBB and function in the brain of zebrafish suffering from PD. Subcellular localization study indicated that BBRP could rapidly and specifically accumulate in mitochondria of PC12 cells when it exerted anti-PD effect. In addition, BBRP could suppress accumulation of Pink1 protein and inhibit the overexpression of LC3 protein in 6-OHDA damaged cells. All these results suggested that the potential site of action of berberine is mitochondria in the brain under the PD condition. Therefore, the findings described herein would be useful for further development of berberine as an anti-PD drug.


Assuntos
Berberina/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Berberina/administração & dosagem , Berberina/química , Berberina/farmacocinética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Embrião não Mamífero , Células HeLa , Humanos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/etiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Células PC12 , Proteínas Quinases/metabolismo , Ratos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA