Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; 19(5): 427-434, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335952

RESUMO

INTRODUCTION: The acute and isolated ingestion of sodium bicarbonate (NaHCO3) and caffeine (CAF) improves performance and delays fatigue in high-intensity tasks. However, it remains to be elucidated if the coingestion of both dietary supplements stimulates a summative ergogenic effect. This study aimed to examine the effect of the acute coingestion of NaHCO3 and CAF on repeated-sprint performance. METHODS: Twenty-five trained participants (age: 23.3 [4.0] y; sex [female/male]: 12/13; body mass: 69.6 [12.5] kg) participated in a randomized, double-blind, placebo (PLA) -controlled, crossover study. Participants were assigned to 4 conditions: (1) NaHCO3 + CAF, (2) NaHCO3, (3) CAF, or (4) PLA. Thus, they ingested 0.3 g/kg of NaHCO3, 3 mg/kg of CAF, or PLA. Then, participants performed 4 Wingate tests (Wt), consisting of a 30-second all-out sprint against an individualized resisted load, interspersed by a 1.5-minute rest period between sprints. RESULTS: Peak (Wpeak) and mean (Wmean) power output revealed a supplement and sprint interaction effect (P = .009 and P = .049, respectively). Compared with PLA, NaHCO3 + CAF and NaHCO3 increased Wpeak performance in Wt 3 (3%, P = .021) and Wt 4 (4.5%, P = .047), while NaHCO3 supplementation increased mean power performance in Wt 3 (4.2%, P = .001). In Wt 1, CAF increased Wpeak (3.2%, P = .054) and reduced time to Wpeak (-8.5%; P = .008). Plasma lactate showed a supplement plus sprint interaction (P < .001) when NaHCO3 was compared with CAF (13%, P = .031) and PLA (23%, P = .021). CONCLUSION: To summarize, although the isolated ingestion of CAF and NaHCO3 improved repeated-sprint performance, the coingestion of both supplements did not stimulate a synergic ergogenic effect.


Assuntos
Desempenho Atlético , Cafeína , Estudos Cross-Over , Suplementos Nutricionais , Ácido Láctico , Substâncias para Melhoria do Desempenho , Corrida , Bicarbonato de Sódio , Humanos , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Cafeína/administração & dosagem , Masculino , Feminino , Desempenho Atlético/fisiologia , Método Duplo-Cego , Adulto Jovem , Substâncias para Melhoria do Desempenho/administração & dosagem , Corrida/fisiologia , Ácido Láctico/sangue , Adulto , Teste de Esforço
2.
Int J Sport Nutr Exerc Metab ; 34(1): 1-10, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751902

RESUMO

The present randomized study investigated the effect of acute supplementation of 800 mg/kg of ketone monoester ingestion (KE) or placebo (PL) and 210 mg/kg of NaHCO3 co-ingestion on cycling performance of WorldTour cyclists during a road cycling stage simulation. Twenty-eight cyclists participated in the study (27.46 ± 4.32 years; 1.80 ± 0.06 m; 69.74 ± 6.36 kg). Performance, physiological, biochemical, and metabolism outcomes, gut discomfort, and effort perceived were assessed during a road cycling simulation composed of an 8-min time-trial (TT) performance + 30-s TT + 4.5 hr of outdoor cycling + a second 8-min TT + a second 30-s TT. Greater absolute and relative mean power during the first 8-min TT (F = 5.067, p = .033, ηp2=.163, F = 5.339, p = .029, ηp2=.170, respectively) was observed after KE than after PL (KE: 389 ± 34, PL: 378 ± 44 W, p = .002, d = 0.294 and KE: 5.60 ± 0.42, PL: 5.41 ± 0.44 W/kg, p = .001, d = 0.442). Additionally, greater concentration of ß-hydroxybutyrate blood concentration (F = 42.195, p < .001, ηp2=.619) was observed after KE than after PL during the first steps of the stage (e.g., after warm-up KE: 1.223 ± 0.642, PL: 0.044 ± 0.058 mM, p < .001, d = 2.589), although the concentrations returned to near baseline after 4.5 hr of outdoor cycling. Moreover, higher values of anion gap were observed (F = 2.333, p = .026, ηp2=.080) after KE than after PL ingestion, after the warm-up and after the first 8-min and 30-s TT. Additionally, lower concentrations of HCO3- were reported in the KE condition after warm-up and after the first 8-min and 30-s TT. During the initial phase of the stage simulation, acute supplementation with KE + NaHCO3 co-ingestion enhanced 8-min TT cycling performance (3.1%) in WorldTour cyclists with a concomitant hyperketonaemia.


Assuntos
Desempenho Atlético , Bicarbonatos , Humanos , Ciclismo , Cetonas , Bicarbonato de Sódio/farmacologia , Ingestão de Alimentos , Método Duplo-Cego
3.
J Int Soc Sports Nutr ; 20(1): 2216678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227399

RESUMO

OBJECTIVE: This study examined the effects of oral and topical (PR Lotion; Momentous) sodium bicarbonate (NaHCO3) during a battery of team sport-specific exercise tests. METHOD: In a block randomized, crossover, double-blind, placebo-controlled design, 14 recreationally trained male team sport athletes performed a familiarization visit and three experimental trials receiving: (i) 0.3 g·kg-1 body mass (BM) NaHCO3 in capsules + placebo lotion (SB-ORAL), (ii) placebo capsules +0.9036 g·kg-1 BM PR Lotion (SB-LOTION), or (iii) placebo capsules + placebo lotion (PLA). Supplements were given ~120 min prior to the team sport-specific exercise tests: countermovement jumps (CMJ), 8 × 25 m repeated sprints and Yo-Yo Intermittent Recovery Level 2 (Yo-Yo IR2). Blood acid-base balance (pH, bicarbonate) and electrolytes (sodium, potassium) were measured throughout. Rating of perceived exertion (RPE) was recorded after each sprint and post-Yo-Yo IR2. RESULTS: Distance covered during the Yo-Yo IR2 was 21% greater for SB-ORAL compared with PLA (+94 m; p = 0.009, d = 0.64) whereas performance was only 7% greater for SB-LOTION compared with PLA (480 ± 122 vs. 449 ± 110 m; p = 0.084). Total completion time for the 8 × 25 m repeated sprint test was 1.9% faster for SB-ORAL compared with PLA (-0.61 s; p = 0.020, d = 0.38) and 2.0% faster for SB-LOTION compared with PLA (-0.64 s; p = 0.036, d = 0.34). CMJ performance was similar between treatments (p > 0.05). Blood acid-base balance and electrolytes were significantly improved for SB-ORAL compared with PLA, but no differences were observed for SB-LOTION. Compared to PLA, RPE was lower for SB-LOTION after the fifth (p = 0.036), sixth (p = 0.012), and eighth (p = 0.040) sprints and for SB-ORAL after the sixth (p = 0.039) sprint. CONCLUSIONS: Oral NaHCO3 improved 8 × 25 m repeated sprint (~2%) and Yo-Yo IR2 performance (21%). Similar improvements in repeated sprint times were observed for topical NaHCO3 (~2%), but no significant benefits were reported for Yo-Yo IR2 distance or blood acid-base balance compared to PLA. These findings suggest that PR Lotion might not be an effective delivery system for transporting NaHCO3 molecules across the skin and into systematic circulation, therefore further research is needed to elucidate the physiological mechanisms responsible for the ergogenic effects of PR Lotion.


Assuntos
Desempenho Atlético , Corrida , Humanos , Masculino , Atletas , Desempenho Atlético/fisiologia , Método Duplo-Cego , Teste de Esforço , Poliésteres , Corrida/fisiologia , Bicarbonato de Sódio/farmacologia , Esportes de Equipe , Estudos Cross-Over
4.
J Int Soc Sports Nutr ; 20(1): 2206390, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37151086

RESUMO

BACKGROUND: CrossFit includes weightlifting, powerlifting, and gymnastics in various combinations of overloads and repetitions with limited rest periods or no rest between training sets. Due to the novelty of CrossFit, there are few studies on the effect of nutritional strategies on the acute response to this type of sports activity. This study examined the effect of caffeine (CAF) and sodium bicarbonate (NaHCO3) ingestion separately and in combination on the performance and rate of perceived exertion (RPE) during the Cindy CrossFit workout (Cindy) in CrossFit participants. METHOD: In a double-blind, crossover, randomized, placebo-controlled trial, 20 CrossFit participants underwent five experimental conditions, including control (CON), placebo (PLA), CAF, NaHCO3, and CAF + NaHCO3 (7 days to wash-out between assessment sessions) before completing the Cindy protocol (age: 22.30 ± 2.88 years, body mass index: 25.22 ± 2.51 kg/m2). Capsules containing 6 mg/kg body weight (BW) CAF were consumed 50 min before the Cindy workout while 0.3 g/kg BW NaHCO3 was consumed for 3 days, leading to 120, 90, and 60 min before the Cindy workout. Performance, RPE, muscular power (MP), handgrip strength (HGS), and maximum heart rate (MHR) were measured before and shortly after the Cindy. RESULTS: The performance of CrossFit participants during the Cindy protocol was not significantly improved following CAF, NaHCO3, and CAF + NaHCO3 (P > 0.05). In contrast, RPE during and at the end of the Cindy was significantly decreased following CAF + NaHCO3 consumption compared to PLA and CON (P = 0.001, P = 0.02). However, MP (P = 0.82) and HGS (P = 0.52) were not significantly different between conditions. Also, MHR was significantly greater following CAF, NaHCO3, and CAF + NaHCO3 consumption than CON (P = 0.01). CONCLUSION: CAF + NaHCO3 supplementation decreased RPE despite significantly increased MHR, but with no significant effect on performance, HGS, or MP. Therefore, CrossFit participants may benefit from the ergogenic effects of CAF and NaHCO3 when consumed separately or together.


Assuntos
Desempenho Atlético , Cafeína , Humanos , Adulto Jovem , Adulto , Cafeína/farmacologia , Bicarbonato de Sódio/farmacologia , Força da Mão , Desempenho Atlético/fisiologia , Método Duplo-Cego , Estudos Cross-Over , Suplementos Nutricionais , Poliésteres
5.
J Dairy Sci ; 106(7): 4580-4598, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37164850

RESUMO

Forty-five Holstein lactating cows (41 ± 8.8 kg/d of milk yield, 96 ± 35.6 days in milk, and 607 ± 80.4 kg of body weight) were enrolled in this study to assess the effects of diets supplemented with sodium bicarbonate or a magnesium-based product and their corresponding differences in dietary cation-anion difference (DCAD) on rumen pH, rumen microbial population, and milk performance of dairy cattle exposed to an induced decrease in rumen pH through a dietary challenge. Cows were randomly allocated to 3 total mixed rations (TMR) differing in the type of supplement to modulate rumen pH: (1) control, no supplementation; (2) SB, supplemented with 0.82% of sodium bicarbonate with a neutralizing capacity (NC) of 12 mEq/g; and (3) MG, supplemented with 0.25% of magnesium oxide (pHix-Up, Timab Magnesium) with a NC of 39 mEq/g. Thus, SB and MG rations had, in theory, the same NC. The 3 TMR differed for control, SB, and MG in their DCAD-S (calculated considering Na, K, Cl, and S), which was on average 13.2, 21.2, and 13.7 mEq/100 g, respectively, or DCAD-Mg (calculated accounting for Mg, Ca, and P), which was 31.4, 41.2, and 35.2 mEq/100 g, respectively. The study lasted 63 d, with the first 7 d serving as a baseline, followed by a fortnightly progressive decrease of dietary forage-to-concentrate ratio (FCR) starting at 48:52, then 44:56, then 40:60, and finishing at 36:64. Individual dry matter intake (DMI) was recorded daily. Seven cows per treatment were equipped with electronic rumen boluses to monitor rumen pH. Control and SB cows consumed less dry matter (DM; 23.5 ± 0.31 kg/d) than MG cows (25.1 ± 0.31 kg/d) when fed dietary FCR of 44:56 and 40:60. Energy-corrected milk decreased from 40.8 ± 1.21 to 39.5 ± 1.21 kg/d as dietary FCR decreased, independently of dietary treatments. Rumen pH decreased and the proportion of the day with rumen pH <5.8 increased as dietary FCR decreased, and at low dietary FCR (i.e., 36:64) rumen pH was greater in MG cows than in control and SB cows. Reducing the DCAD-S from 28 to 18 mEq/100 g or the DCAD-Mg from 45 to 39 mEq/kg had no effects on DMI or milk yield. Cows supplemented with ∼62 g/d of magnesium oxide (pHix-Up) maintained a greater rumen pH and consumed more DM than cows supplemented with ∼200 g/d of sodium bicarbonate when fed a diet with low FCR.


Assuntos
Lactação , Óxido de Magnésio , Feminino , Bovinos , Animais , Óxido de Magnésio/farmacologia , Bicarbonato de Sódio/farmacologia , Magnésio , Rúmen , Dieta/veterinária , Leite , Ingestão de Alimentos , Ânions , Concentração de Íons de Hidrogênio , Ração Animal/análise , Cátions
6.
Eur J Appl Physiol ; 123(8): 1763-1771, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37027014

RESUMO

The use of sodium bicarbonate (NaHCO3) supplementation to improve repeated high-intensity performance is recommended; however, most swimming performance studies examine time trial efforts rather than repeated swims with interspersed recovery that are more indicative of training sessions. The aim of this study, therefore, was to investigate the effects of 0.3 g.kg-1 BM NaHCO3 supplementation on sprint interval swimming (8 × 50 m) in regionally trained swimmers. Fourteen regionally competitive male swimmers (body mass (BM): 73 ± 8 kg) volunteered for this double-blind, randomised, crossover designed study. Each participant was asked to swim 8 × 50 m (front crawl) at a maximum intensity from a diving block, interspersed with 50 m active recovery swimming. After one familiarisation trial, this was repeated on two separate occasions whereby participants ingested either 0.3 g.kg-1 BM NaHCO3 or 0.05 g.kg-1 BM sodium chloride (placebo) in solution 60 min prior to exercise. Whilst there were no differences in time to complete between sprints 1-4 (p > 0.05), improvements were observed in sprint 5 (p = 0.011; ES = 0.26), 6 (p = 0.014; ES = 0.39), 7 (p = 0.005; ES = 0.60), and 8 (p = 0.004; ES = 0.79). Following NaHCO3 supplementation, pH was greater at 60 min (p < 0.001; ES = 3.09), whilst HCO3- was greater at 60 min (p < 0.001; ES = 3.23) and post-exercise (p = 0.016; ES = 0.53) compared to placebo. These findings suggest NaHCO3 supplementation can improve the latter stages of sprint interval swimming performance, which is likely due to the augmentation of pH and HCO3- prior to exercise and the subsequent increase in buffering capacity during exercise.


Assuntos
Desempenho Atlético , Mergulho , Humanos , Masculino , Bicarbonato de Sódio/farmacologia , Natação , Método Duplo-Cego , Ingestão de Alimentos , Concentração de Íons de Hidrogênio
7.
Eur J Appl Physiol ; 123(6): 1191-1198, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36705750

RESUMO

PURPOSE: Sodium bicarbonate (SB) supplementation can improve exercise performance, but few studies consider how effective it is in female athletes. The aim of the study was to establish the effect of individually timed pre-exercise SB ingestion on 2 km rowing time trial (TT) performance in female athletes. METHODS: Eleven female CrossFit® athletes (mean ± SD age, 29 y ± 4 y, body mass, 64.5 kg ± 7.1 kg, height, 1.7 m ± 0.09 m, peak oxygen uptake [VO2peak], 53.8 ± 5.7 mL·kg-1∙min-1). An initial trial identified individual time-to-peak [HCO3-] following enteric-coated 0.3 g·kg-1 BM SB ingestion. Participants then completed a 2 km TT familiarisation followed by a placebo (PLA) or SB trial, using a randomised cross-over design. RESULTS: The ingestion of SB improved rowing performance (514.3 ± 44.6 s) compared to the PLA (529.9 ± 45.4 s) and FAM trials (522.2 ± 43.1 s) (p = 0.001, pη2 = 0.53) which represents a 2.24% improvement compared to the PLA. Individual time-to-peak alkalosis occurred 102.3 ± 22.1 min after ingestion (range 75-150 min) and resulted in increased blood [HCO3-] of 5.5 ± 1.5 mmol⋅L-1 (range = 3.8-7.9 mmol⋅L-1). The change in blood [HCO3-] was significantly correlated with the performance improvement between PLA and SB trials (r = 0.68, p = 0.020). CONCLUSIONS: Ingesting a 0.3 g·kg-1 BM dose of enteric-coated SB improves 2 km rowing performance in female athletes. The improvement is directly related to the extracellular buffering capacity even when blood [HCO3-] does not change ≥ 5.0 mmol⋅L-1.


Assuntos
Desempenho Atlético , Esportes Aquáticos , Humanos , Feminino , Adulto , Bicarbonato de Sódio/farmacologia , Atletas , Estudos Cross-Over , Método Duplo-Cego , Suplementos Nutricionais , Poliésteres
8.
J Diet Suppl ; 20(5): 689-705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35758017

RESUMO

Sodium bicarbonate (NaHCO3) has been used as an ergogenic substance during high-intensity exercises. Therefore, the aim of the present study was to investigate the effects of NaHCO3 supplementation on external and internal load parameters during isokinetic exercise in trained subjects. Ten subjects were tested on two occasions: after ingesting 0.3 g.kg-1 of body mass of NaHCO3 or placebo. Maximum voluntary isometric contraction was performed before and after a dynamic protocol consisting of 10 series of 10 movements of flexion/extension of the knee extensors at 120° s-1 at an interval of 60 s between series. Outcomes considered were: peak torque (isokinetic dynamometry), blood lactate and creatine concentration (CK), analysis of perceptions of effort (OMNI scale), pain (visual analog scale) and recovery (scale raging 6 to 20). Performance was assessed using peak torque values. Muscle damage was assessed prior and 24 h post exercise. The subjective perceptions of effort, pain and recovery were assessed at different times and the internal load of the session was assessed 30 min post-effort. Although significant reductions in peak torque were noted both in isometric (NaHCO3:-29.11 ± 22.95%, Placebo: -23.51 ± 15.23%; p = 0.38) and isokinetic strength (NaHCO3:-23.0 ± 13.9%, Placebo:-19.6 ± 9.1%; p = 0.09), there was no effect of supplementation on performance (p > 0.05). The blood CK concentrations (NaHCO3: pre:225.3 ± 135.9 U/L, post: 418.4 ± 318.4 U/L; Placebo: pre:238 ± 94.03 U/L, post:486 ± 336.6 U/L) increased after protocol (p = 0.005), however, without differences between conditions. In conclusion, the NaHCO3 did not attribute benefits in performance or in parameters related to the internal load of exercise.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Bicarbonato de Sódio , Humanos , Estudos Cross-Over , Método Duplo-Cego , Músculo Esquelético/efeitos dos fármacos , Dor , Bicarbonato de Sódio/farmacologia , Creatina Quinase/sangue , Contração Isométrica , Ácido Láctico/sangue
9.
Crit Rev Food Sci Nutr ; 63(21): 5080-5093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34882489

RESUMO

Muscle acidification is one of the main factors causing fatigue during exercise, thus compromising performance. The sport supplements beta alanine (ß-A) and sodium bicarbonate (SB) are thought to enhance the effects of the body's buffer systems by reducing H+ concentrations. The aim of this systematic review was to analyze the effects of ß-A and SB co-supplementation on the organism's buffering capacity and sport performance. The databases PubMed, Web of Science, Medline, CINAHL and SPORTDiscus were searched until November 2021 following PRISMA guidelines. Randomized controlled trials, at least single-blind, performed in athletes of any age were considered. Nine studies including a total of 221 athletes were identified for review. Athletes were supplemented with ß-A and SB while they performed exercise tests to assess physical performance and buffer capacity. Five of the nine studies indicated there was some additional improvement in buffering capacity and performance with co-supplementation, while one study concluded that the effect was comparable to the added effects of the individual supplements. According to the results of the studies reviewed, we would recommend ß-A and SB co-supplementation during high intensity exercises lasting between 30 s and 10 min.


Assuntos
Exercício Físico , Bicarbonato de Sódio , Humanos , Bicarbonato de Sódio/farmacologia , Método Simples-Cego , Exercício Físico/fisiologia , Suplementos Nutricionais , beta-Alanina/farmacologia
10.
BMC Microbiol ; 22(1): 268, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36348266

RESUMO

BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse Neonatal , Infecções Estafilocócicas , Recém-Nascido , Humanos , Staphylococcus aureus , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico , Ácido Ascórbico/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Dexametasona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Eur J Appl Physiol ; 122(12): 2555-2563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053364

RESUMO

Sodium bicarbonate (NaHCO3) is a widely researched ergogenic aid, but the optimal blinding strategy during randomised placebo-controlled trials is unknown. In this multi-study project, we aimed to determine the most efficacious ingestion strategy for blinding NaHCO3 research. During study one, 16 physically active adults tasted 0.3 g kg-1 body mass NaHCO3 or 0.03 g kg-1 body mass sodium chloride placebo treatments given in different flavour (orange, blackcurrant) and temperature (chilled, room temperature) solutions. They were required to guess which treatment they had received. During study two, 12 recreational athletes performed time-to-exhaustion (TTE) cycling trials (familiarisation, four experimental). Using a randomised, double-blind design, participants consumed 0.3 g kg-1 body mass NaHCO3 or a placebo in 5 mL kg-1 body mass chilled orange squash/water solutions or capsules and indicated what they believed they had received immediately after consumption, pre-TTE and post-TTE. In study one, NaHCO3 prepared in chilled orange squash resulted in the most unsure ratings (44%). In study two, giving NaHCO3 in capsules resulted in more unsure ratings than in solution after consumption (92 vs 33%), pre-TTE (67 vs. 17%) and post-TTE (50 vs. 17%). Administering NaHCO3 in capsules was the most efficacious blinding strategy which provides important implications for researchers conducting randomised placebo-controlled trials.


Assuntos
Ácido Láctico , Bicarbonato de Sódio , Adulto , Humanos , Bicarbonato de Sódio/farmacologia , Cápsulas , Ciclismo , Método Duplo-Cego , Ingestão de Alimentos
12.
J Dairy Sci ; 105(10): 8054-8068, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028344

RESUMO

In a randomized complete block design, 40 lactating Holstein cows (average 98 d in milk and 41 kg/d of milk yield) were randomly assigned to 1 of 4 diets: (1) containing soybean meal as the major protein supplement (CON diet); (2) CON diet with high-protein dried corn distillers grains at 20% on a dry matter (DM) basis by replacing mainly soybean meal (DG diet); (3) DG diet except that high-protein dried corn distillers grains with yeast bodies (extracted after corn ethanol production) was used (DGY diet); or (4) DG diet supplemented with sodium bicarbonate and potassium carbonate to elevate the dietary cation and anion difference (DCAD; DG-DCAD diet). The DCAD of CON, DG, DGY, and DG-DCAD were 185, 62, 67, and 187 mEq/kg of DM, respectively. The experiment began with a 10-d covariate period and then cows were fed the experimental diets for 5 wk (2-wk diet adaptation and 3-wk data collection periods). Dry matter intake and milk yield were measured daily, and spot urine and fecal samples were collected in the last week of the experiment to measure nutrient digestibility; N, S, and P utilization and excretion; and in vitro NH3 and H2S emissions from manure. All data were analyzed using the MIXED procedure of SAS (random effect: block; fixed effects: diets, repeated week, and interactions). During data collection, DM intake was not different among treatment groups, but milk yield tended to be lower (42.4 vs. 39.9 kg/d) for DG, DGY, and DG-DCAD versus CON, which could have been caused by decreases in organic matter and neutral detergent fiber digestibility. Milk protein yield tended to be lower (1.33 vs. 1.24 kg/d) for DG, DGY, and DG-DCAD versus CON. Milk fat yield was lower (1.26 vs. 1.55 kg/d) for DG and DGY versus CON, but that for DG-DCAD (1.43 kg/d) did not differ from CON. Similarly, energy-corrected milk was lower (38.0 vs. 43.3 kg/d) for cows on DG and DGY versus those on CON, but it did not differ between DG-DCAD (40.7 kg/d) and CON. Urinary and fecal N excretion were greater for DG, DGY, and DG-DCAD compared with CON due to greater dietary crude protein content and N intake. However, NH3 emissions did not differ across treatments. Intakes of dietary P and S were greater for DG, DGY, and DG-DCAD, resulting in greater excretion of those in manure and greater H2S emissions from manure compared with CON. These data suggest that the negative effects of feeding distillers grains on production of lactating cows can be partly explained by a decrease in nutrient digestibility (milk yield) and excessive anion load (milk fat). The milk fat response to DG-DCAD suggests that milk fat depression observed with a diet with high content of distillers grains can be partially alleviated by supplementation of cations. In the current study, we observed no beneficial effects of DG containing yeast bodies.


Assuntos
Lactação , Esterco , Ração Animal/análise , Animais , Ânions , Cátions , Bovinos , Detergentes , Dieta/veterinária , Proteínas Alimentares/farmacologia , Etanol/farmacologia , Feminino , Lactação/fisiologia , Proteínas do Leite/farmacologia , Nutrientes , Saccharomyces cerevisiae , Bicarbonato de Sódio/farmacologia , Zea mays
13.
Medicina (Kaunas) ; 58(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35454357

RESUMO

Background and Objectives: Kidneys play a key role in maintaining the acid−base balance. The aim of this study was to evaluate the effect of a 3-month oral sodium bicarbonate administration on arterial wall stiffness, arterial pressure and serum nutritional markers in non-dialysed patients with chronic kidney disease (CKD) stages 3−5 and metabolic acidosis. Methods: Eighteen CKD patients with eGFR < 45 mL/min/1.73 m2 and capillary blood bicarbonate (HCO3) < 22 mmol/L were enrolled in this single-centre, prospective study. Anthropometric parameters, pulse wave velocity, 24-h ambulatory blood pressure measurements, blood and urine parameters were assessed at the beginning and at the end of the study. The patients received supplementation with 2 g of sodium bicarbonate daily for three months. Results: A significant increase of pH: 7.32 ± 0.06 to 7.36 ± 0.06; p = 0.025, HCO3 from 18.7 mmol/L (17.7−21.3) to 22.2 mmol/L (20.2−23.9); p < 0.001 and a decrease in base excess from −6.0 ± 2.4 to −1.9 ± 3.1 mmol/L; p < 0.001 were found. An increase in serum total protein from 62.7 ± 6.9 to 65.8 ± 6.2; p < 0.013 and albumin from 37.3 ± 5.4 to 39.4 ± 4.8; p < 0.037 but, also, NT-pro-BNP (N-Terminal Pro-B-Type Natriuretic Peptide) from 794.7 (291.2−1819.0) to 1247.10 (384.7−4545.0); p < 0.006, CRP(C Reactive Protein) from 1.3 (0.7−2.9) to 2.8 (1.1−3.1); p < 0.025 and PTH (parathyroid hormone) from 21.5 ± 13.7 to 27.01 ± 16.3; p < 0.006 were observed, as well as an increase in erythrocyte count from 3.4 ± 0.6 to 3.6 ± 0.6; p < 0.004, haemoglobin from 10.2 ± 2.0 to 11.00 ± 1.7; p < 0.006 and haematocrit from 31.6 ± 6.00 to 33.6 ± 4.8; p < 0.009. The mean eGFR during sodium bicarbonate administration did not change significantly: There were no significant differences in pulse wave velocity or in the systolic and diastolic BP values. Conclusion: The administration of sodium bicarbonate in non-dialysed CKD patients in stages 3−5 improves the parameters of metabolic acidosis and serum nutritional markers; however, it does not affect the blood pressure and vascular stiffness.


Assuntos
Acidose , Doenças Cardiovasculares , Insuficiência Renal Crônica , Acidose/tratamento farmacológico , Bicarbonatos/uso terapêutico , Biomarcadores , Monitorização Ambulatorial da Pressão Arterial , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Estudos Prospectivos , Análise de Onda de Pulso , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Fatores de Risco , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico
14.
Curr Nutr Rep ; 11(2): 273-282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394616

RESUMO

PURPOSE OF REVIEW: To verify the effects of sodium bicarbonate (NaHCO3) supplementation on biochemical and physical measurements of combat sports athletes. RECENT FINDINGS: A systematic review of articles indexed in three databases (PubMed, CAPES journal, and Google Scholar) was carried out until October 2020, using descriptors related to NaHCO3 supplementation in combat sports. First, 38 articles were identified. Next, eight articles were selected through the inclusion and exclusion criteria. The methodological quality of the articles was assessed using the Physiotherapy Evidence Database (PEDro) scale (8 and 9 points). Blood lactate, rating of perceived exertion, Special Judo Fitness Test, Dummy throw, and mean and peak powers for Wingate were evaluated. Random effects meta-analysis was used, the effect size was adjusted by corrected Hedges' g, and the heterogeneity is explored by I2. The results were obtained through weighted average and 95% CI, and the significance limit was set as p < 0.05. NaHCO3 supplementation had a significant effect on increasing blood lactate (p = 0.006) of the athletes studied. However, the performance measures (rating of perceived exertion, power, and specific performance) did not show a significant difference (p ˂ 0.05). In conclusion, NaHCO3 supplementation causes a significant increase in blood lactate, indicating an ergogenic effect on buffer, which can delay the onset of fatigue and contribute to the performance of combat sports athletes. New experimental studies need to be published that assess the effect of acute and chronic NaHCO3 supplementation in specific combat sports tests and in women.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Suplementos Nutricionais , Feminino , Humanos , Lactatos , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia
15.
J Dairy Sci ; 105(4): 3090-3101, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35123778

RESUMO

The objective of this study was to evaluate the effects of replacing magnesium oxide (MgO) with calcium-magnesium carbonate [CaMg(CO3)2] on ruminal fermentation with or without the addition of sodium bicarbonate (NaHCO3). Eight fermentors of a dual-flow continuous-culture system were distributed in a replicated (2) 4 × 4 Latin square design in a 2 × 2 factorial arrangement of treatments (magnesium sources × NaHCO3). The treatments tested were 0.21% MgO [MgO; dry matter (DM) basis; 144.8 mEq of dietary cation-anion difference (DCAD)]; 0.21% MgO + 0.50% NaHCO3 (MgO+NaHCO3; DM basis; 205.6 mEq of DCAD); 1.00% CaMg(CO3)2 [CaMg(CO3)2; DM basis; 144.8 mEq of DCAD]; and 1.00% CaMg(CO3)2 + 0.50% NaHCO3 [CaMg(CO3)2+NaHCO3; DM basis; 205.6 mEq of DCAD]. Diets were formulated to have a total of 0.28% of Mg (DM basis). The experiment consisted of 40 d, which was divided into 4 periods of 10 d each, where 7 d were used for adaptation and 3 d for sampling to determine pH, volatile fatty acids (VFA), ammonia (NH3-N), lactate, mineral solubility, N metabolism, and nutrient digestibility. The effects of Mg source [MgO vs. CaMg(CO3)2], NaHCO3 (with vs. without), and the interaction were tested with the MIXED procedure of SAS version 9.4 (SAS Institute). There was no Mg source × NaHCO3 interaction in the pH variables and mineral solubility, and Mg sources evaluated did not affect the variables related to ruminal pH and solubility of Mg. On the other hand, the inclusion of NaHCO3 increased the pH daily average, independent of Mg source, which led to a reduced time that pH was below 5.8 and decreased area under the curve. Total VFA and lactate concentration were similar among treatments regardless of NaHCO3 and Mg source; however, the molar proportion of isobutyrate and NH3-N concentration were lower in diets with CaMg(CO3)2 compared with MgO. Moreover, NaHCO3 inclusion increased NH3-N, total daily NH3-N flow, isobutyrate concentration, and acid detergent fiber digestibility. Our results showed that CaMg(CO3)2 leads to a lower NH3-N concentration and isobutyrate proportion. Therefore, because most of the tested variables were not significantly different between MgO and CaMg(CO3)2 when combined or not with NaHCO3, CaMg(CO3)2 can be a viable alternative source to replace MgO in dairy cow diets without affecting mineral solubility, ruminal pH, nutrient digestibility, total VFA, and the main ruminal VFA. Although Mg sources are known to have an alkalizing effect, NaHCO3 inclusion in diets with Mg supplementation allowed an increase in ruminal pH, as well as an increase in isobutyrate and NH3-N flow.


Assuntos
Magnésio , Rúmen , Ração Animal/análise , Animais , Cálcio/metabolismo , Carbonato de Cálcio , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Nutrientes , Rúmen/metabolismo , Bicarbonato de Sódio/farmacologia
16.
J Am Nutr Assoc ; 41(1): 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314967

RESUMO

The review aimed to perform a meta-analysis of studies exploring the acute effects of sodium bicarbonate on Wingate test performance. Ten databases were searched to find studies that examined the effects of sodium bicarbonate on single and repeated Wingate tests. Meta-analyses were performed using the random-effects model. Ten studies were included in the review. There was no significant difference between the sodium bicarbonate and placebo trials for mean power in Wingate test 1 (standardized mean difference [SMD] = 0.02; 95% confidence interval [CI]: -0.07, 0.11) and test 3 (SMD = 0.21; 95% CI: -0.16, 0.58). There was a significant effect of sodium bicarbonate on mean power in Wingate test 2 (SMD = 0.09; 95% CI: 0.03, 0.16), and test 4 (SMD = 0.62; 95% CI: 0.15, 1.08). When considering studies that used shorter rest intervals between repeated Wingate tests, a significant effect of sodium bicarbonate was found on mean power in Wingate test 3 (SMD = 0.40; 95% CI: 0.01, 0.80). There was no significant difference between the sodium bicarbonate and placebo trials for peak power in Wingate test 1 (SMD = -0.01; 95% CI: -0.06, 0.04), test 2 (SMD = 0.02; 95% CI: -0.10, 0.13), or test 4 (SMD = 0.29; 95% CI: -0.13, 0.71). There was a significant effect of sodium bicarbonate on peak power in test 3 (SMD = 0.09; 95% CI: 0.00, 0.17). The results of this review suggest that sodium bicarbonate may provide an ergogenic effect on measures of repeated Wingate test performance.Key Teaching PointsSodium bicarbonate is a popular ergogenic aid. The Wingate test is commonly used to evaluate high-intensity exercise performance. While several studies explored the effects of sodium bicarbonate ingestion on Wingate test performance, the findings are conflicting.In this meta-analysis, 10 studies that examined the acute effects of sodium bicarbonate on single and/or repeated Wingate test performance were included.There was no significant difference between sodium bicarbonate and placebo trials for mean or peak power in a single Wingate test.However, sodium bicarbonate was ergogenic for mean power in repeated Wingate tests. Specifically, an ergogenic effect was found in test 2 and test 4 (standardized mean difference: 0.09 to 0.62). When considering only studies that used shorter rest intervals between repeated Wingate tests, an ergogenic effect was found in test 3 (standardized mean difference: 0.40).Sodium bicarbonate was also ergogenic for peak power in Wingate test 3, but with small effects (standardized mean difference: 0.09).


Assuntos
Substâncias para Melhoria do Desempenho , Ingestão de Alimentos , Exercício Físico , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia
17.
Sports Med ; 52(3): 505-526, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34687438

RESUMO

BACKGROUND: Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE: To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS: This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS: 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [ßSmall:Medium = 0.16 (95% CrI 0.02-0.32), ßSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [ßSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS: Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.


Assuntos
Tolerância ao Exercício , Substâncias para Melhoria do Desempenho , Teorema de Bayes , Suplementos Nutricionais , Humanos , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia
18.
Eur J Sport Sci ; 22(5): 745-754, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33487131

RESUMO

ABSTRACTSodium bicarbonate (SB) is considered an effective ergogenic supplement for improving high-intensity exercise capacity and performance, although recent data suggests that women may be less amenable to its ergogenic effects than men. Currently, an apparent paucity of data on women means no consensus exists on whether women benefit from SB supplementation. The aim of the current study was to quantify the proportion of the published literature on SB supplementation that includes women, and to synthesise the evidence regarding its effects on blood bicarbonate and exercise performance in women by performing a systematic review and meta-analysis. Electronic searches of the literature were undertaken using three databases (MEDLINE, Embase, SPORTDiscus) to identify relevant articles. All meta-analyses were performed within a Bayesian framework. A total of 149 SB articles were identified, 11 of which contained individual group data for women. Results indicated a pooled blood bicarbonate increase of 7.4 [95%CrI: 4.2-10.4 mmol·L-1] following supplementation and a pooled standardised exercise effect size of 0.37 [95%CrI: -0.06-0.92]. The SB literature is skewed, with only 20% (30 studies) of studies employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women. Despite the small amount of available data, results are consistent in showing that SB supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely to be small to medium in magnitude.HighlightsThis study aimed to quantify the proportion of the published literature on sodium bicarbonate supplementation that includes women and to synthesise the evidence regarding its ergogenic effect on women, using a systematic review and meta-analytic approach.The sodium bicarbonate literature is skewed, with only 30 studies (20%) employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women.Despite the small amount of available data, results are consistent in showing that sodium bicarbonate supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely small to medium in magnitude.Based on these findings, we do not believe there is any evidence to support sex-specific sodium bicarbonate dosing recommendations and that current recommendations of 0.2-0.3 g·kg-1BM of SB taken 60-180 min prior to high-intensity exercise appear appropriate for the female athlete.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Atletas , Teorema de Bayes , Bicarbonatos/farmacologia , Suplementos Nutricionais , Feminino , Humanos , Masculino , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia
19.
J Diet Suppl ; 19(6): 791-802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34151681

RESUMO

This meta-analysis explored the effects of sodium bicarbonate supplementation on swimming performance. Seven databases were searched to find relevant studies. A random-effects meta-analysis of standardized mean differences (SMD) was performed to analyze the data. Nine studies were included in the review. There was no significant difference between placebo and sodium bicarbonate when considering data from all included studies (SMD: -0.10; p = 0.208) or in the subgroup analysis for 91.4-m and 100-m swimming tests (SMD: 0.11; p = 0.261). In the subgroup analysis for 200-m and 400-m swimming tests, there was a significant ergogenic effect of sodium bicarbonate (SMD: -0.22; p < 0.001; -1.3%). Overall, these results suggest that sodium bicarbonate ingestion improves performance in 200-m and 400-m swimming events. The ergogenic effects of this supplement were small, but they may also be of substantial practical importance given that placings in swimming competitions are commonly determined by narrow margins.


Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Bicarbonato de Sódio/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Natação , Suplementos Nutricionais
20.
J Int Soc Sports Nutr ; 18(1): 71, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794476

RESUMO

BACKGROUND: We aimed to perform an umbrella review of meta-analyses examining the effects of sodium bicarbonate supplementation on exercise performance. METHODS: We systematically searched for meta-analyses that examined the effects of sodium bicarbonate supplementation on exercise performance. The methodological quality of the included reviews was evaluated using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR 2) checklist. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework for downgrading the certainty in evidence was used, which included assessments of risk of bias, inconsistency, indirectness, imprecision, and publication bias. RESULTS: Eight reviews of moderate and high methodological quality met inclusion criteria. Using the GRADE framework, evidence for the ergogenic effects of sodium bicarbonate supplementation on peak and mean power in the Wingate test and Yo-Yo test performance was classified as being of moderate quality. The evidence for these outcomes did not receive a point on the indirectness GRADE item, as "serious indirectness" was detected. Low-quality evidence was found for the ergogenic effect of sodium bicarbonate supplementation on endurance events lasting ∼45 s to 8 min, muscle endurance, and 2000-m rowing performance. Evidence for these outcomes was classified as low quality, given that risk of bias, indirectness, and publication bias were assessed as "unclear", "serious", and "strongly suspected", respectively. The ergogenic effects ranged from trivial (pooled effect size: 0.09) to large (pooled effect size: 1.26). Still, for most outcomes, sodium bicarbonate elicited comparable ergogenic effects. For example, sodium bicarbonate produced similar effects on performance in endurance events lasting ∼45 s to 8 min, muscle endurance tests, and Yo-Yo test (pooled effect size range: 0.36 to 0.40). No significant differences between the effects of sodium bicarbonate and placebo were found for general mean power, muscle strength, and repeated-sprint ability. CONCLUSION: Based on meta-analyses of moderate to high quality, it can be concluded that sodium bicarbonate supplementation acutely enhances peak anaerobic power, anaerobic capacity, performance in endurance events lasting ∼45 s to 8 min, muscle endurance, 2000-m rowing performance, and high-intensity intermittent running. More research is needed among women to improve the generalizability of findings.


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Exercício Físico , Substâncias para Melhoria do Desempenho , Bicarbonato de Sódio , Humanos , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia , Revisões Sistemáticas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA