Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 789
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339084

RESUMO

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Assuntos
Bifidobacterium animalis , Microbiota , Lactente , Feminino , Humanos , Fórmulas Infantis , Leite Humano , Suplementos Nutricionais , Aleitamento Materno , Bifidobacterium , Fezes/microbiologia , Oligossacarídeos/farmacologia
2.
J Med Food ; 27(2): 145-153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38079198

RESUMO

Pequi is a native and popular fruit in Cerrado biome. The internal yellow-orange mesocarp is the edible fraction of the fruit, but its shell (peel and external mesocarp), which comprises 80% of the fruit, is not used by the agro-industry during fruit processing. There is a growing interest in the reduction of food loss and waste because of environmental, economic, and social impacts. So this study evaluated the chemical composition, antioxidant capacity, and in vitro prebiotic activity of pequi shell flour. Pequi shell flour was obtained from the lyophilization and milling of pequi shell. The content of dietary fibers, oligosaccharides, sugars, organic acids, total phenolics and tannins, polyphenol profile, and antioxidant capacity was determined in pequi shell flour. In addition, its prebiotic activity was evaluated on growth and metabolism of probiotics Lactobacillus and Bifidobacterium strains. Pequi shell flour has a high content of dietary fibers (47.92 g/100 g), soluble fibers (18.65 g/100 g), raffinose (2.39 g/100 g), and phenolic compounds (14,062.40 mg gallic acid equivalents/100 g). For the first time, the polyphenols epigallocatechin gallate, epicatechin, and procyanidin B2 were identified in this by-product. Pequi shell flour promoted greater growth of Lacticaseibacillus casei L-26 (at 24-48 h) and Bifidobacterium animalis subsp. lactis BB-12, as well as higher prebiotic activity scores than fructooligosaccharides (standard prebiotic). Pequi shell flour is rich in prebiotic compounds and has a high antioxidant and prebiotic potential. The promising results encourage its use as an ingredient with antioxidant and potential prebiotic properties to elaborate new functional foods and nutraceuticals.


Assuntos
Ingredientes de Alimentos , Malpighiales , Antioxidantes , Lactobacillus , Bifidobacterium , Fibras na Dieta
3.
Vopr Pitan ; 92(4): 92-103, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37801459

RESUMO

Despite the fact that dietary supplements (DS) are not medicines, an increasing number of publications testify to the effectiveness of probiotics consumed with food in the complex treatment and prevention of a number of diseases of the gastrointestinal tract, including irritable bowel syndrome (IBS) and antibiotic-associated diarrhea (AAD). The purpose of the study was to evaluate the effectiveness of the complex probiotic in the relief of diarrheal syndrome associated with intestinal microbiota dysbiosis in patients with IBS with diarrhea and AAD. Material and methods. The study included 54 patients (31 with IBS with diarrhea and 23 with idiopathic AAD) aged 18 to 50 years. All patients included in the study were prescribed 1 capsule (350 mg) of the DS Neobiotic Lactobalance® per day for 21 days. One capsule contains: bifidobacteria (Bifidobacterium longum CBT BG7, Bifidobacterium lactis CBT BL3 Bifidobacterium bifidum CBT BF3), lactobacilli (Lactobacillus acidophilus CBT LA1, Lactobacillus rhamnosus CBT LR5), lactic acid bacteria (Streptococcus thermophilus CBT ST3), fructooligosaccharides, vitamin C. The daily intake of bifidobacteria was 8.7×108 CFU, lactobacilli - 6.1×109 CFU, lactic acid bacteria 3.1×108 CFU and vitamin C - 12 mg. The severity of symptoms was assessed in points (from 0 to 7 points) using the GSRS questionnaire (Gastrointestinal Symptom Rating Scale). All patients underwent a microbiological analysis of feces with an assessment of the degree of dysbiosis before and after the administration of DS. Results. In patients with IBS with diarrhea, the assessment of the manifestations of diarrheal syndrome according to the GSRS questionnaire decreased statistically significantly from 17 to 6 points (2.9 times), abdominal pain - from 12 to 4 points (3.0 times) and dyspeptic syndrome - from 8 to 3 points (in 2.7 times). In patients with AAD, also according to the GSRS questionnaire, the manifestations of diarrheal syndrome decreased statistically significantly from 13 to 3 points (4.3 times), abdominal pain - from 4 to 1 points (4.0 times) and dyspepsia syndrome - from 5 to 2 points (in 2.5 times). Against the background of DS intake, according to the data of bacteriological examination of feces, intestinal microbiota normalized by day 21 due to an increase in the number of lacto- and bifidobacteria (p=<0.05). Conclusion. The study showed that the DS Neobiotic Lactobalance® contributes to the normalization of the intestinal microbiota and reduces the severity of clinical manifestations (diarrheal disorders or manifestations of diarrhea) in IBS and idiopathic AAD.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/microbiologia , Disbiose/induzido quimicamente , Disbiose/complicações , Diarreia/complicações , Diarreia/terapia , Lactobacillus , Probióticos/uso terapêutico , Resultado do Tratamento , Bifidobacterium , Dor Abdominal , Vitaminas , Antibacterianos/uso terapêutico , Ácido Ascórbico
4.
Nutrients ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630690

RESUMO

Due to the rising demand for supplements targeting cognitive enhancement and dry eye together with the health benefits of anthocyanins, we have developed a functional soup containing an anthocyanin-rich functional ingredient, or "Anthaplex," and assessed the effects on cognitive function and eye dryness together with the possible mechanisms. A total of 69 male and female health volunteers were randomized and divided into placebo, D2, and D4 groups. All subjects consumed 120 mL of placebo or functional soup containing "Anthaplex" either at 2 or 4 g per serving per day within 5 min in the morning for eight weeks. The cognitive function, working memory, dry eye, AChE, MAO, MAO-A, MAO-B, and GABA-T activities, BDNF, HAC, HDAC, and DNMT activities, pH, and amount of lactic acid-producing bacteria, particularly Lactobacillus and Bifidobacterium spp. in feces, were determined before intervention and after eight weeks of consumption. Subjects who consumed the "Anthaplex" soup had improved cognitive function, working memory, eye dryness, histone acetylation, ACh E suppression, and BDNF with increased Bifidobacterium spp. but decreased pH in feces. These data suggest that "Anthaplex" improves cognitive function and eye dryness via the modulations of the histone acetylation process, gut microbiome, and cholinergic function.


Assuntos
Síndromes do Olho Seco , Microbioma Gastrointestinal , Lactobacillales , Humanos , Feminino , Masculino , Adulto , Antocianinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Histonas , Cognição , Bifidobacterium , Suplementos Nutricionais , Epigênese Genética
5.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630731

RESUMO

Bifidobacterium animalis subsp. lactis HN019 is a probiotic with several documented human health benefits. Interest in probiotics has led to the development of new formats that probiotics, including HN019, can be supplemented into. In this study, we looked at common HN019 formats such as frozen culture and freeze-dried powder as well as supplementing it into the following food matrices: yogurts (dairy, soy, and oat based), xanthan gum-based tablets, pulpless orange juice, whey sports drink, and dark chocolate (70% cocoa). In this work, our aim was to investigate whether the food matrix that carried HN019 via simulated human digestion (a dual model system mimicking both upper and lower gastrointestinal digestion) influenced probiotic delivery. To that end, we validated and used a real-time qPCR assay to detect HN019 after simulated digestion. In addition, we also measured the effect on a panel of metabolites. After simulated digestion, we were able to detect HN019 from all the matrices tested, and the observed changes to the metabolite profile were consistent with those expected from the food matrix used. In conclusion, this work suggests that the food matrix supplemented with HN019 did not interfere with delivery to the colon via simulated human digestion.


Assuntos
Bifidobacterium , Digestão , Humanos , Bifidobacterium/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácido Láctico/metabolismo , Ácidos Graxos/metabolismo , Colo/metabolismo , Colo/microbiologia
6.
Eur J Nutr ; 62(7): 3069-3077, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498369

RESUMO

PURPOSE: Recent findings revealed a potential effect of a probiotic in improving quality of life (QoL) in ulcerative colitis (UC). In Jordan, there is scarce data about UC patients and QoL. METHODS: Twenty-four UC patients were included in the study and were randomly allocated into probiotic (3 × 1010 probiotic capsules containing nine Lactobacillus and five Bifidobacterium species) and placebo control groups (containing polysaccharide supplied in an identical bottle) 3 times daily/6 weeks. A short inflammatory bowel disease questionnaire (SIBDQ) was used to assess the change in the quality of life in both groups at the beginning and the end of the intervention; The study was completed during the COVID-19 pandemic. RESULTS: Patients treated with probiotics showed a higher score of social (6.92 ± 0.29, p = 0.019), bowel (6.31 ± 0.46, p = 0.001), emotional (6.47 ± 0.46, p < 0.001), and total SIBDQ scores (6.54 ± 0.29, p < 0.001) compared to the placebo group (5.75 ± 1.57, 4.72 ± 1.34, 4.42 ± 1.67 and 4.96 ± 1.27; respectively). Also, the probiotic group had significantly better scores in the systemic, social, bowel, emotional, and total SIBDQ scores in terms of pre- to post-treatment (p < 0.001). CONCLUSIONS: The use of probiotic therapy containing Lactobacillus and Bifidobacterium species had significantly improved the quality of life among UC patients, this was shown by the improvement in the scores of the systemic domain, social domain, bowel domain, emotional domain, and total SIBDQ. This study is part of a registered study at ClinicalTrials.gov with the number NCT04223479.


Assuntos
COVID-19 , Colite Ulcerativa , Probióticos , Humanos , Colite Ulcerativa/tratamento farmacológico , Qualidade de Vida , Jordânia , Pandemias , Bifidobacterium , Lactobacillus , Probióticos/uso terapêutico , Suplementos Nutricionais , Método Duplo-Cego , Resultado do Tratamento
7.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37358243

RESUMO

Probiotics, such as Lactobacillus and Bifidobacterium, promote growth in piglets by modulating gut microbiota composition and improving the host immune system. A strain of Lactobacillus sp. and Bifidobacterium thermacidophilum were previously isolated from fresh feces of Tibetan pigs. The effects of these isolated strains on growth performance, intestinal morphology, immunity, microbiota composition, and their metabolites were evaluated in weaned piglets. Thirty crossbred piglets were selected and fed either a basal diet (CON), a basal diet supplemented with aureomycin (ANT), or a basal diet supplemented with Lactobacillus sp. and B. thermacidophilum (LB) for 28 d. The piglets in the ANT and LB groups had significantly higher body weight gain than those in the CON group (P < 0.05). Piglets in the ANT and LB groups had regularly arranged villi and microvilli in the small intestine. Furthermore, they had improved immune function, as indicated by decreased serum concentrations of inflammatory cytokines (P < 0.05), improved components of immune cells in the blood, mesenteric lymph nodes, and spleen. Additionally, metagenomic sequencing indicated a significant shift in cecal bacterial composition and alterations in microbiota functional profiles following Lactobacillus sp. and B. thermacidophilum supplementation. Metabolomic results revealed that the metabolites were also altered, and Kyoto Encyclopedia of Genes and Genomes analysis revealed that several significantly altered metabolites were enriched in glycerophospholipid and cholesterol metabolism (P < 0.05). Furthermore, correlation analysis showed that several bacterial members were closely related to the alterations in metabolites, including Bacteroides sp., which were negatively correlated with triglyceride (16:0/18:0/20:4[5Z,8Z,11Z,14Z]), the metabolite that owned the highest variable importance of projection scores. Collectively, our findings suggest that combined supplementation with Lactobacillus sp. and B. thermacidophilum significantly improved the growth performance, immunity, and microbiota composition in weaned piglets, making them prospective alternatives to antibiotics in swine production.


Probiotics such as Lactobacillus and Bifidobacterium have growth- and immunity-promoting effects in piglets. Thirty weaned piglets were selected and fed either a basal diet, a basal diet supplemented with aureomycin, or a basal diet supplemented with Lactobacillus sp. and Bifidobacterium thermacidophilum isolated from Tibetan pigs for 28 d. The results showed that combined supplementation with B. thermacidophilum and Lactobacillus sp. significantly improved growth performance, intestinal morphology, and immunity in weaned piglets, which is similar to piglets treated with antibiotics. They also improved cecal bacterial composition as indicated by the metagenomic sequencing results. Metabolomic results revealed that the altered metabolites were primarily enriched in glycerophospholipid and cholesterol metabolism. Correlation analysis showed that many bacterial members were closely related to the alterations of metabolites, suggesting B. thermacidophilum and Lactobacillus sp. exert effects via bacterial metabolism. Thus, Lactobacillus sp. and B. thermacidophilum could potentially be used as a prospective alternative of antibiotic growth promoters in piglets.


Assuntos
Lactobacillus , Microbiota , Animais , Suínos , Estudos Prospectivos , Tibet , Suplementos Nutricionais , Bifidobacterium , Desmame
8.
Nutrients ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049541

RESUMO

Prebiotics are substrates that are selectively utilized by host microorganisms, thus conferring a health benefit. There is a growing awareness that interpersonal and age-dependent differences in gut microbiota composition impact prebiotic effects. Due to the interest in using human milk oligosaccharides (HMOs) beyond infancy, this study evaluated how HMOs [2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), 6'Sialyllactose (6'SL)] and blends thereof affect the microbiota of 6-year-old children (n = 6) and adults (n = 6), compared to prebiotics inulin (IN) and fructooligosaccharides (FOS). The ex vivo SIFR® technology was used, given its demonstrated predictivity in clinical findings. First, HMOs and HMO blends seemed to maintain a higher α-diversity compared to FOS/IN. Further, while 2'FL/LNnT were bifidogenic for both age groups, 3'SL/6'SL and FOS/IN were exclusively bifidogenic for children and adults, respectively. This originated from age-related differences in microbiota composition because while 3'SL/6'SL stimulated B. pseudocatenulatum (abundant in children), FOS/IN enhanced B. adolescentis (abundant in adults). Moreover, all treatments significantly increased acetate, propionate and butyrate (only in adults) with product- and age-dependent differences. Among the HMOs, 6'SL specifically stimulated propionate (linked to Bacteroides fragilis in children and Phocaeicola massiliensis in adults), while LNnT stimulated butyrate (linked to Anaerobutyricum hallii in adults). Indole-3-lactic acid and 3-phenyllactic acid (linked to immune health) and gamma-aminobutyric acid (linked to gut-brain axis) were most profoundly stimulated by 2'FL and HMO blends in both children and adults, correlating with specific Bifidobacteriaceae. Finally, 2'FL/LNnT increased melatonin in children, while 3'SL remarkably increased folic acid in adults. Overall, age-dependent differences in microbiota composition greatly impacted prebiotic outcomes, advocating for the development of age-specific nutritional supplements. HMOs were shown to be promising modulators in the adult, and particularly the children's microbiota. The observed HMO-specific effects, likely originating from their structural heterogeneity, suggest that blends of different HMOs could maximize treatment effects.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Adulto , Humanos , Criança , Leite Humano/química , Bifidobacterium , Prebióticos/análise , Propionatos/análise , Oligossacarídeos/análise , Inulina/farmacologia , Butiratos/análise
9.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36657381

RESUMO

Lactulose is commonly used in pharmacy for constipation and hepatic encephalopathy treatment. The prebiotic effect of lactulose is also often mentioned. However, its cryoprotective effect in combination with lecithin on the main representatives of probiotics has not been tested yet. The 12 taxa of bifidobacteria and Lactobacillaceae members were used for the purpose. These were mixed in a ratio of 1:1 with lactulose + lecithin (finally 5.0% and 1.25%, respectively; LL). The 25% glycerol (G+) solution and cultures themselves were applied as positive and negative controls, respectively. Bacterial suspensions were stored at a mild freezing temperature (-20°C) until the end of the experiment (210th day). The LL solution had a comparable (insignificant difference at the P-value = 0.05) cryoprotective effect as the positive control in five of six bifidobacteria and in three of six representatives of Lactobacillaceae. The better cryoprotective effect was revealed in other Lactobacillaceae. At the end of the experiment, the generally accepted therapeutic minimum (>107 Colony Forming Units/mL) was determined in LL solution in five bifidobacteria and four Lactobacillaceae strains. The presented results improve knowledge about long-term mild cryopreservation of the most commonly used probiotics and could contribute to developing new forms of (nutri)synbiotics.


Assuntos
Lactulose , Probióticos , Lactulose/uso terapêutico , Crioprotetores/farmacologia , Lecitinas , Glycine max , Lactobacillaceae , Bifidobacterium , Probióticos/uso terapêutico
10.
Probiotics Antimicrob Proteins ; 15(3): 491-501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34671923

RESUMO

Breast milk was long considered a sterile environment, but now it is known to harbor many bacteria that will shape the newborn microbiota. The benefits of breastfeeding to newborn health are, on some level, related to the presence of beneficial bacteria in human milk. Therefore, this study aims to investigate and isolate potential probiotics present in human milk that might be associated with improved health in infants, being potential candidates to be used in simulated human milk formula. Milk samples of 24 healthy mothers were collected at three time points: 30 min (colostrum), 5-9 days (transitional milk), and 25-30 days (mature milk) postpartum. Samples were evaluated by culturing, and the isolated bacteria were identified by MALDI-TOF MS and 16S DNA sequencing. In vitro screening for probiotics properties was performed, and the potential probiotics were mono-associated with germ-free mice to evaluate their ability to colonize the gastrointestinal tract. The microorganisms were submitted to the spray-drying process to check their viability for a potential simulated milk formula production. Seventy-seven bacteria were isolated from breast milk pertaining to four bacterial genera (Staphylococcus, Streptococcus, Leuconostoc, and Lacticaseibacillus). Four potential probiotics were selected: Lacticaseibacillus rhamnosus (n = 2) and Leuconostoc mesenteroides (n = 2). Isolates were able to colonize the gastrointestinal tract of germ-free mice and remained viable after the spray-drying process. In conclusion, breast milk harbors a unique microbiota with beneficial microorganisms that will impact the newborn gut colonization, being an essential source of probiotic candidates to be used in a formula of simulated maternal milk.


Assuntos
Leite Humano , Probióticos , Lactente , Feminino , Gravidez , Humanos , Animais , Camundongos , Leite Humano/microbiologia , Bifidobacterium/genética , Bactérias/genética , Colostro/microbiologia
11.
J Complement Integr Med ; 20(1): 223-232, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758244

RESUMO

OBJECTIVES: Evidence for the contribution of the brain-gut-microbiota axis to the depression pathophysiology is increasing nowadays. Disturbed gut microbiota equilibrium along with bad dietary habits both lead to kynurenine pathway abnormalities contributing to the depression pathophysiology. In this respect, many studies are found but the interventional clinical trials are limited. The present interventional study aims to evaluate the impact of Bifidobacterium spp. supplementation together with improving dietary intake on depressive mood and well-being and their correlation with kynurenine blood level in adult Egyptian healthy volunteers. METHODS: A number of 98 healthy female volunteers with a mean age of 46.96 ± 1.82 years were selected and enrolled in this study. They were given yogurt enriched with Bifidobacterium spp. daily for eight weeks. Clinical examination as well as questionnaires for the evaluation of psychological well-being and depression were done at base line and after eight weeks of intervention. Fasting blood samples and stool samples were collected from all subjects at baseline and eight weeks after the intervention for the investigation of serum kynurenine concentration, blood hemoglobin, serum transaminases (ALT & AST) serum urea and creatinine as well as fecal Bifidobacterium count. RESULTS: Data revealed that both depression and well-being showed highly significant improvement combined with significant drop in kynurenine blood level after intervention. Also, a significant rise in fecal Bifidobacterium count and a significant improvement in hemoglobin level and activity of liver enzymes were recorded. After intervention, a significant negative correlation was recorded between depression and fecal Bifidobacterium count as well as between serum kynurenine level, and well-being. CONCLUSION: Bifidobacterium spp. supplementation combined with improvement in dietary intake resulted in improvement of depressive mood and well-being and reduced kynurenine blood level.


Assuntos
Bifidobacterium , Probióticos , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Probióticos/uso terapêutico , Depressão/terapia , Cinurenina , Afeto
12.
Probiotics Antimicrob Proteins ; 15(4): 868-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113319

RESUMO

Sensing of the intestinal microbiota by the host immune system is important to induce protective immune responses. Hence, modification of the gut microbiota might be able to prevent or treat allergies, mediated by proinflammatory Th2 immune responses. The aim was to investigate the ex vivo immunomodulatory effects of the synbiotics Pollagen® and Kallergen®, containing the probiotic bacterial strains Lactobacillus, Lacticaseibacillus and Bifidobacterium, in the context of grass pollen allergy. Peripheral blood mononuclear cells (PBMCs) from grass pollen-allergic patients and healthy controls were stimulated with grass pollen extract (GPE) and synbiotics and Gata3 expression and cytokine secretion analyzed. Monocyte-derived dendritic cells (MoDCs) cells were matured in the presence of GPE and synbiotics, co-cultured with autologous naïve T cells and maturation markers and cytokine secretion analyzed. GPE stimulation of PBMCs from grass pollen-allergic patients resulted in a significant higher production of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 compared to healthy controls. Gata3+CD4+ T cell induction was independent of the allergic status. The synbiotics promoted IL-10 and IFN-γ secretion and downregulated the GPE-induced Th2-like phenotype. Co-culturing naïve T cells with MoDCs, matured in the presence of GPE and synbiotics, shifted the GPE-induced Th2 cytokine release towards Th1-Th17-promoting conditions in allergic subjects. The investigated synbiotics are effective in downregulating the GPE-induced Th2 immune response in PBMCs from grass pollen-allergic patients as well as in autologous MoDC-T cell stimulation assays. In addition to increased IL-10 release, the data indicates a shift from a Th2- to a more Th1- and Th17-like phenotype.


Assuntos
Bifidobacterium , Células Dendríticas , Leucócitos Mononucleares , Rinite Alérgica Sazonal , Simbióticos , Humanos , Bifidobacterium/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Lacticaseibacillus/imunologia , Lactobacillus/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/microbiologia , Imunomodulação/imunologia , Células Cultivadas
13.
Crit Rev Food Sci Nutr ; 63(3): 411-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278845

RESUMO

Endemic selenium (Se) deficiency is a major worldwide nutritional challenge. Organic Se can be synthesized through physical and chemical methods that are conducive to human absorption, but its high production cost and low output cannot meet the actual demand for Se supplementation. Some microbes are known to convert inorganic Se into organic forms of high nutritional value and Se-enriched probiotics are the main representatives. The aim of the present review is to describe the characteristics of Se-enriched yeast, lactic acid bacteria, bifidobacteria and discuss their Se enrichment mechanisms. Se products metabolized by Se-enriched probiotics have been classified, such as Se nanoparticles (SeNPs) and selenoprotein, and their bioactivities have been assessed. The factors affecting the Se enrichment capacity of probiotics and their application in animal feed, food additives, and functional food production have been summarized. Moreover, a brief summary and the development of Se-enriched probiotics, particularly their potential applications in the field of biomedicine have been provided. In conclusion, Se-enriched probiotics not just have a wide range of applications in the food industry but also have great potential for application in the field of biomedicine in the future.


Assuntos
Lactobacillales , Probióticos , Selênio , Animais , Humanos , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo , Bifidobacterium/metabolismo
14.
Food Funct ; 13(23): 12303-12315, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36349889

RESUMO

This study investigated the effects of different functional oligosaccharides on the growth performance, intestinal barrier function and gut microbiota of weanling piglets. A total of 192 weanling piglets were randomly allocated into 4 dietary groups, which were a control (CON), CON + 0.1% xylo-oligosaccharide (XO), CON + 0.1% isomalto-oligosaccharide (IM) or CON + 0.08% mannan-oligosaccharide (MO) diet. Results showed that the XO and MO groups showed lower diarrhea incidence in weanling piglets compared with the CON group (P < 0.05). Colonic goblet cell numbers and the mRNA expression of mucin-2 (P < 0.05) were greater in all functional oligosaccharide groups. Both the XO and MO groups had a greater concentration of sIgA, IL-10, SOD and GSH-Px and higher antioxidase activity, and the XO group had a lower protein expression of NF-κB in the ilea of piglets (P < 0.05) compared with the CON group. The XO group had a greater concentration of butyrate and an abundance of Bifidobacterium in the ileum (P < 0.05). The MO group had a greater ileal concentration of acetate compared with the additional dietary treatments and greater butyrate compared with the IM and CON groups (P < 0.05). In summary, XO increased the growth of Bifidobacterium, butyrate production and intestinal antioxidant capacity; however, MO promoted the expression of tight junction proteins and the intestinal immune function to reduce piglet diarrhea.


Assuntos
Suplementos Nutricionais , Microbiota , Animais , Bifidobacterium , Butiratos , Diarreia/prevenção & controle , Diarreia/veterinária , Imunidade , Mananas , Oligossacarídeos/farmacologia , Suínos
15.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364942

RESUMO

Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.


Assuntos
Galinhas , Zea mays , Animais , Galinhas/metabolismo , Zea mays/metabolismo , Antocianinas/farmacologia , Antocianinas/metabolismo , Escherichia coli/metabolismo , Ceco/metabolismo , Bifidobacterium/metabolismo , Clostridium , Extratos Vegetais/farmacologia
16.
J Nanobiotechnology ; 20(1): 439, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207740

RESUMO

BACKGROUND: Dysbiosis or imbalance of gut microbiota in Alzheimer's disease (AD) affects the production of short-chain fatty acids (SCFAs), whereas exogenous SCFAs supplementation exacerbates brain Aß burden in APP/PS1 mice. Bifidobacterium is the main producer of SCFAs in the gut flora, but oral administration of Bifidobacterium is ineffective due to strong acids and bile salts in the gastrointestinal tract. Therefore, regulating the levels of SCFAs in the gut is of great significance for AD treatment. METHODS: We investigated the feasibility of intranasal delivery of MSNs-Bifidobacterium (MSNs-Bi) to the gut and their effect on behavior and brain pathology in APP/PS1 mice. RESULTS: Mesoporous silica nanospheres (MSNs) were efficiently immobilized on the surface of Bifidobacterium. After intranasal administration, fluorescence imaging of MSNs-Bi in the abdominal cavity and gastrointestinal tract revealed that intranasally delivered MSNs-Bi could be transported through the brain to the peripheral intestine. Intranasal administration of MSNs-Bi not only inhibited intestinal inflammation and reduced brain Aß burden but also improved olfactory sensitivity in APP/PS1 mice. CONCLUSIONS: These findings suggested that restoring the balance of the gut microbiome contributes to ameliorating cognitive impairment in AD, and that intranasal administration of MSNs-Bi may be an effective therapeutic strategy for the prevention of AD and intestinal disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Transtornos do Olfato , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Bifidobacterium/metabolismo , Ácidos e Sais Biliares , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Camundongos , Camundongos Transgênicos , Transtornos do Olfato/patologia , Dióxido de Silício
17.
Front Cell Infect Microbiol ; 12: 1004845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093186

RESUMO

Background: This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results: The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion: The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body's lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.


Assuntos
Dieta Rica em Proteínas , Medicamentos de Ervas Chinesas , Animais , Bifidobacterium , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Lactase/genética , Camundongos
18.
Nutrients ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014803

RESUMO

Background: Numerous studies have investigated the effects of the supplementation of fructooligosaccharides (FOS) on the number of bacteria in the gut that are good for health, but the results have been inconsistent. Additionally, due to its high fermentability, supplementation of FOS may be associated with adverse gastrointestinal symptoms such as bloating and flatulence. Therefore, we assessed the effects of FOS interventions on the composition of gut microbiota and gastrointestinal symptoms in a systematic review and meta-analysis. Design: All randomized controlled trials published before 10 July 2022 that investigated the effects of FOS supplementation on the human gut microbiota composition and gastrointestinal symptoms and met the selection criteria were included in this study. Using fixed or random-effects models, the means and standard deviations of the differences between the two groups before and after the intervention were combined into weighted mean differences using 95% confidence intervals (CIs). Results: Eight studies containing 213 FOS supplements and 175 controls remained in this meta-analysis. Bifidobacterium spp. counts significantly increased during FOS ingestion (0.579, 95% CI: 0.444−0.714) in comparison with that of the control group. Subgroup analysis showed greater variation in Bifidobacterium spp. in adults (0.861, 95% CI: 0.614−1.108) than in infants (0.458, 95% CI: 0.297−0.619). The increase in Bifidobacterium spp. counts were greater in the group with an intervention duration greater than 4 weeks (0.841, 95% CI: 0.436−1.247) than an intervention time less than or equal to four weeks (0.532, 95% CI: 0.370−0.694), and in the group with intervention doses > 5 g (1.116, 95% CI: 0.685−1.546) the counts were higher than those with doses ≤ 5 g (0.521, 95% CI: 0.379−0.663). No differences in effect were found between FOS intervention and comparators in regard to the abundance of other prespecified bacteria or adverse gastrointestinal symptoms. Conclusions: This is the first meta-analysis to explore the effect of FOS on gut microbiota and to evaluate the adverse effects of FOS intake on the gastrointestinal tract. FOS supplementation could increase the number of colonic Bifidobacterium spp. while higher dose (7.5−15 g/d) and longer duration (>4 weeks) showed more distinct effects and was well tolerated.


Assuntos
Microbioma Gastrointestinal , Adulto , Bactérias , Bifidobacterium , Suplementos Nutricionais , Humanos , Lactente , Oligossacarídeos/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Front Immunol ; 13: 947655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874733

RESUMO

Selenium (Se) is a micronutrient that plays a predominant role in various physiological processes in humans and animals. Long-term lack of Se will lead to many metabolic diseases. Studies have found that chronic Se deficiency can cause chronic diarrhea. The gut flora is closely related to the health of the body. Changes in environmental factors can cause changes in the intestinal flora. Our study found that Se deficiency can disrupt intestinal flora. Through 16s high-throughput sequencing analysis of small intestinal contents of mice, we found that compared with CSe group, the abundance of Lactobacillus, Bifidobacterium, and Ileibacterium in the low selenium group was significantly increased, while Romboutsia abundance was significantly decreased. Histological analysis showed that compared with CSe group, the small intestine tissues of the LSe group had obvious pathological changes. We examined mRNA expression levels in the small intestine associated with inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junctions, and smooth muscle contraction. The mRNA levels of NF-κB, IκB, p38, IL-1ß, TNF-α, Beclin, ATG7, ATG5, LC3α, BaK, Pum, Caspase-3, RIP1, RIPK3, PERK, IRE1, elF2α, GRP78, CHOP2, ZO-1, ZO-2, Occludin, E-cadherin, CaM, MLC, MLCK, Rho, and RhoA in the LSe group were significantly increased. The mRNA levels of IL-10, p62 BcL-2 and BcL-w were significantly decreased in the LSe group compared with the CSe group. These results suggest that changes in the abundance of Lactobacillus, bifidobacterium, ileum, and Romboutsia may be associated with cellular inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junction, and abnormal smooth muscle contraction. Intestinal flora may play an important role in chronic diarrhea caused by selenium deficiency.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Apoptose , Autofagia , Bifidobacterium , Diarreia , Estresse do Retículo Endoplasmático , Humanos , Inflamação , Camundongos , Músculo Liso , RNA Mensageiro
20.
J Pediatr Gastroenterol Nutr ; 75(4): 535-542, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881967

RESUMO

OBJECTIVES: To compare the impact of two probiotic supplements on fecal microbiota and metabolites, as well as on gut inflammation in human milk-fed preterm infants. METHODS: In this single-center observational cohort study, we assessed the effects of Bifidobacterium longum subsp. infantis or Lactobacillus reuteri supplementation on the infant gut microbiota by 16S rRNA gene sequencing and fecal metabolome by 1 H nuclear magnetic resonance spectroscopy. Fecal calprotectin was measured as a marker of enteric inflammation. Aliquots of human or donor milk provided to each infant were also assessed to determine human milk oligosaccharide (HMO) content. RESULTS: As expected, each probiotic treatment was associated with increased proportions of the respective bacterial taxon. Fecal HMOs were significantly higher in L. reuteri fed babies despite similar HMO content in the milk consumed. Fecal metabolites associated with bifidobacteria fermentation products were significantly increased in B. infantis supplemented infants. Fecal calprotectin was lower in infants receiving B. infantis relative to L. reuteri ( P < 0.01, Wilcoxon rank-sum test) and was negatively associated with the microbial metabolite indole-3-lactate (ILA). CONCLUSIONS: This study demonstrates that supplementing an HMO-catabolizing Bifidobacterium probiotic results in increased microbial metabolism of milk oligosaccharides and reduced intestinal inflammation relative to a noncatabolizing Lactobacillus probiotic in human milk-fed preterm infants. In this context, Bifidobacterium may provide greater benefit in human milk-fed infants via activation of the microbiota-metabolite-immune axis.


Assuntos
Microbiota , Probióticos , Bifidobacterium , Bifidobacterium longum subspecies infantis/metabolismo , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Complexo Antígeno L1 Leucocitário/metabolismo , Oligossacarídeos/metabolismo , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA