Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Appl Mater Interfaces ; 16(11): 13439-13452, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456847

RESUMO

Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.


Assuntos
Bifidobacterium animalis , Colite , Nanopartículas , Selênio , Humanos , Selênio/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Bifidobacterium animalis/metabolismo , Nanopartículas/química , Colite/induzido quimicamente , Colite/tratamento farmacológico
2.
Appl Environ Microbiol ; 88(22): e0129622, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36300953

RESUMO

Probiotics are widely used to promote performance and improve gut health in weaning piglets. Therefore, the objective of this study was to investigate the effects of dietary supplementation with Bifidobacterium animalis subsp. lactis (B. animalis) JYBR-190 on the growth performance, intestine health, and gut microbiota of weaning piglets. The results showed that the dietary addition of B. animalis significantly improved growth performance and decreased diarrhea incidence. B. animalis increased villus height in the duodenum and elevated goblet cell numbers and amylase activity in the jejunum. Additionally, B. animalis supplementation markedly increased total antioxidant capacity in jejunal mucosa but declined the malondialdehyde content. B. animalis treatment did not affect the mRNA expressions associated with the intestinal barrier and inflammatory cytokine in various intestinal segments. Microbiota analysis indicated that a diet supplemented with B. animalis significantly increased the relative abundances of health-promoting bacteria in the lumen, such as Streptococcus, Erysipelotrichaceae, Coprococcus, and Oscillibacter. There was a trend for B. animalis fed piglets to have a higher relative abundance of B. animalis in ileal digesta. Moreover, B. animalis-treated pigs decreased the abundance of Helicobacter and Escherichia-Shigella in ileal mucosa-associated microbiota. In summary, this study showed that B. animalis supplementation stimulated growth performance, improved gut development, enriched beneficial bacteria abundances, and declined intestinal pathogens populations, while B. animalis had limited effects on the intestinal barrier and immune function. IMPORTANCE In the modern swine industry, weaning is a critical period in the pig's life cycle. Sudden dietary, social, and environmental changes can easily lead to gut microbiota dysbiosis, diarrhea, and a decrease in growth performance. To stabilize intestinal microbiota and promote animal growth, antibiotics were widely applied in swine diets during the past few decades. However, the side effects of antibiotics posed a great threat to public health and food safety. Therefore, it is urgent to find and develop antibiotic alternatives. The growing evidence suggested that probiotics can be preferable alternatives to antibiotics because they can modulate microbiota composition and resist pathogens colonization. In this study, our results indicated that dietary supplementation with Bifidobacterium animalis promoted growth in weaning piglets by improving gut development, increasing beneficial bacteria abundances, and declining pathogens populations.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Suínos , Animais , Desmame , Antioxidantes/metabolismo , Bifidobacterium animalis/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Diarreia , Bactérias/metabolismo , Antibacterianos , Ração Animal/análise
3.
Urol J ; 19(3): 179-188, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129232

RESUMO

PURPOSE: To determine the effect of a probiotic supplement containing native Lactobacillus acidophilus (L. acidophilus) and Bifidobacterium animalis lactis (B. lactis) on 24-hour urine oxalate in recurrent calcium stone formers with hyperoxaluria. Moreover, the in-vitro oxalate degradation capacity and the intestinal colonization of consumed probiotics were evaluated. MATERIALS AND METHODS: The oxalate degrading activity of L. acidophilus and B. lactis were evaluated in-vitro. The presence of oxalyl-CoA decarboxylase (oxc) gene in the probiotic species was assessed. One hundred patients were randomized to receive the probiotic supplement or placebo for four weeks. The 24-hour urine oxalate and the colonization of consumed probiotics were assessed after weeks four and eight. RESULTS: Although the oxc gene was present in both species, only L. acidophilus had a good oxalate degrading activity, in-vitro. Thirty-four patients from the probiotic and thirty patients from the placebo group finished the study. The urine oxalate changes were not significantly different between groups (57.21 ± 11.71 to 49.44 ± 18.14 mg/day for probiotic, and 56.43 ± 9.89 to 50.47 ± 18.04 mg/day for placebo) (P = .776). The probiotic consumption had no significant effect on urine oxalate, both in univariable (P = .771) and multivariable analyses (P = .490). The consumed probiotics were not detected in the stool samples of most participants. CONCLUSION: Our results showed that the consumption of a probiotic supplement containing L. acidophilus and B. lactis did not affect urine oxalate. The results may be due to a lack of bacterial colonization in the intestine.


Assuntos
Bifidobacterium animalis , Hiperoxalúria , Cálculos Renais , Probióticos , Bifidobacterium animalis/metabolismo , Cálcio , Método Duplo-Cego , Humanos , Cálculos Renais/terapia , Lactobacillus/metabolismo , Lactobacillus acidophilus/metabolismo , Oxalatos/metabolismo , Probióticos/uso terapêutico
4.
J Microbiol ; 59(4): 417-425, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33779954

RESUMO

Probiotics are known to protect against liver damage induced by the alcohol and acetaldehyde accumulation associated with alcohol intake. However, there have been few studies of the direct effect of probiotics on alcohol metabolism, and the types of probiotics that were previously analyzed were few in number. Here, we investigated the effects of 19 probiotic species on alcohol and acetaldehyde metabolism. Four probiotic species that had a relatively high tolerance to alcohol and metabolized alcohol and acetaldehyde effectively were identified: Lactobacillus gasseri CBT LGA1, Lactobacillus casei CBT LC5, Bifidobacterium lactis CBT BL3, and Bifidobacterium breve CBT BR3. These species also demonstrated high mRNA expression of alcohol and acetaldehyde dehydrogenases. ProAP4, a mixture of these four probiotics species and excipient, was then administered to rats for 2 weeks in advance of acute alcohol administration. The serum alcohol and acetaldehyde concentrations were significantly lower in the ProAP4-administered group than in the control and excipient groups. Thus, the administration of ProAP4, containing four probiotic species, quickly lowers blood alcohol and acetaldehyde concentrations in an alcohol and acetaldehyde dehydrogenasedependent manner. Furthermore, the serum alanine aminotransferase activity, which is indicative of liver damage, was significantly lower in the ProAP4 group than in the control group. The present findings suggest that ProAP4 may be an effective means of limiting alcohol-induced liver damage.


Assuntos
Acetaldeído/sangue , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Etanol/sangue , Probióticos/administração & dosagem , Alanina Transaminase/sangue , Álcool Desidrogenase/genética , Consumo de Bebidas Alcoólicas/metabolismo , Aldeído Oxirredutases/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium animalis/genética , Bifidobacterium animalis/metabolismo , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Suplementos Nutricionais , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Lactobacillus gasseri/genética , Lactobacillus gasseri/metabolismo , Masculino , RNA Bacteriano , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
5.
Nutrients ; 13(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513820

RESUMO

A double-blind, placebo-controlled study was performed in a sample of geriatric patients treated with home enteral nutrition (HEN) to analyze the efficacy of a probiotic supplement Proxian®, which contains Lactiplantibacillus plantarum LP01 (LMG P-21021), Lentilactobacillus buchneri Lb26 (DSM 16341), Bifidobacterium animalis subsp. lactis BS01 (LMG P-21384), and is enriched with zinc (Zn) and selenium (Se), in reducing the incidence of infections and modulating inflammation. Thirty-two subjects were enrolled (mean age 79.7 ± 10.3 years), 16 in the intervention group, 16 controls. They received Proxian® or placebo for 60 days. Patients were assessed at baseline (t0) and 60 (t1) and 90 (t2) days after the beginning. Infections were detected by information regarding their clinical manifestations and the incidence of antibiotic therapy. Levels of C-reactive protein (CRP) were measured to study inflammation. Information on bowel function, nutritional status and testimonials regarding the feasibility of administration of the product were collected. Differences between the two groups in number of infections (25% intervention group vs. 44% controls), antibiotic therapies (12% vs. 37%) and modulation of CRP levels (median CRP moved from 0.95 mg/L (t0), to 0.6 (t1) and 0.7 (t2) in intervention group vs. 0.7 mg/L, 0.5 and 0.7 in controls) did not reach statistical significance. No significant changes in bowel function and nutritional status were found. Caregivers' adherence was 100%. Results of this "IntegPRO" study showed that Proxian® is potentially safe, easy to administer and promising for further studies but it appears not to change the incidence of infections or modulate inflammation in elderly treated with HEN. The utility of Proxian® in reducing the incidence of infections and modulating inflammation in these subjects needs to be investigated by a larger multi-center clinical trial, and by using additional analyses on inflammatory markers and markers of infections.


Assuntos
Nutrição Enteral , Inflamação/epidemiologia , Inflamação/terapia , Probióticos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Bifidobacterium animalis/metabolismo , Proteína C-Reativa/metabolismo , Defecação , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Incidência , Lactobacillus/metabolismo , Lactobacillus plantarum/metabolismo , Masculino , Projetos Piloto , Selênio/metabolismo , Zinco/metabolismo
6.
Eur J Nutr ; 59(4): 1493-1503, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31197506

RESUMO

PURPOSE: Low birth weight (LBW) infants have a less diverse gut microbiota, enriched in potential pathogens, which places them at high risk of systemic inflammation diseases. This study aimed to identify the differences in gut bacterial community structure between LBW infants who received probiotics and LBW infants who did not receive probiotics. METHODS: Forty-one infants were allocated to the non-probiotic group (N group) and 56 infants to the probiotic group (P group), according to whether the formula they received contained a probiotic Bifidobacterium lactis. Gut bacterial composition was identified with sequencing of the 16S rRNA gene in fecal samples collected at 14 days after birth. RESULTS: There was no significant difference between the alpha diversity of the two groups, while the beta diversity was significantly different (p < 0.05). Our results showed that Bifidobacterium and Lactobacillus (both p < 0.05) were enriched in the P group, while Veillonella, Dolosigranulum and Clostridium sensu stricto 1 (all p < 0.05) were enriched in the N group. Predicted metagenome function analysis revealed enhancement of fatty acids, peroxisome, starch, alanine, tyrosine and peroxisome pathways in the P group, and enhancement of plant pathogen, Salmonella and Helicobacter pylori infection pathways in the N group. CONCLUSIONS: Probiotic supplement in formula may affect the composition, stability and function of LBW infants' gut microbiota. LBW infants who receive probiotic intervention may benefit from gut microbiota that contains more beneficial bacteria.


Assuntos
Bifidobacterium animalis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fórmulas Infantis , Probióticos/farmacologia , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino , Probióticos/administração & dosagem
7.
Food Res Int ; 126: 108681, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732058

RESUMO

This study assessed the effects of the incorporation of Lactobacillus acidophilus LA-05 or Bifidobacterium animalis ssp. lactis BB-12 in the content and bioaccessibility of phenolics in red pitaya pulp. The oxygen radical absorbance capacity (ORAC) of the dialyzed (bioaccessible) fraction of red pitaya pulp fermented by these probiotics was also assessed. After 48 h of cultivation in red pitaya pulp, the pH and sugar contents decreased, while organic acids and viable counts of the tested probiotics increased (p < 0.05). After exposure to simulated gastrointestinal conditions the viable counts of L. acidophilus LA-05 and B. lactis BB-12 in fermented red pitaya pulp were close to 8 and 7 log CFU/mL, respectively. Fermentation with probiotics decreased (p < 0.05) the contents of phenolic acids and flavonoids in red pitaya pulp. Both, L. acidophilus LA-05 and B. lactis BB-12 increased the presence of phenolics in the non dialyzed fraction of the red pitaya pulp. The bioaccessibility of catechin, epigallocatechin gallate, and procyanidin B2 increased (p < 0.05) in red pitaya pulp fermented by L. acidophilus LA-05 or B. lactis BB-12. The bioaccessible fraction of red pitaya pulp fermented by L. acidophilus LA-05 or B. lactis BB-12 showed higher antioxidant activity than that of the non-fermented red pitaya pulp. These findings indicate the fermentation of red pitaya by probiotics as an alternative to increase the bioaccessibility of specific phenolics, as well as the antioxidant activity in this fruit.


Assuntos
Cactaceae/química , Frutas/química , Fenóis/análise , Probióticos/metabolismo , Bifidobacterium animalis/metabolismo , Disponibilidade Biológica , Fermentação , Lactobacillus acidophilus/metabolismo , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacocinética , Extratos Vegetais/química
8.
Food Res Int ; 99(Pt 1): 495-500, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784510

RESUMO

This study aimed to investigate the effect of a synbiotic beverage made from soy and yacon (Smallanthus sonchifolius) extracts containing Bifidobacterium animalis ssp. lactis BB-12 on healthy elderly individuals' intestinal polyamine concentrations. A randomized, double-blinded, placebo-controlled trial has been conducted with twenty-nine volunteers (over 65years of age) who either had a daily intake of 150mL of synbiotic (synbiotic group - S) or placebo (placebo group - P) beverages. Both had the same nutrient composition, except that a probiotic culture was added to the synbiotic beverage. Total experiment time was 8weeks, which was divided into 3 consecutive phases: a prefeeding period (2weeks), followed by a feeding period (4weeks) and a postfeeding period (2weeks). Stool samples were collected at 3 time periods. Fecal concentrations of polyamines, putrescine (PUT), cadaverine (CAD) and spermidine (SPD) that were obtained during the synbiotic and placebo consumption period were significantly higher (p<0.05) than those found during the pre-consumption baseline level period. No significant differences in the number of bifidobacteria, clostridia, or enterobacteria were observed in any of the two groups at the three time periods. Similarly, no significant effect on the production of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10) was induced by the synbiotic or placebo beverages consumption. The results herein indicate that both the synbiotic and the placebo beverage consumption have increased polyamines levels, which are often reduced in elderly individuals, without influencing inflammatory responses. In addition, both placebo and synbiotic beverages seems to contribute by maintaining increased polyamines levels.


Assuntos
Asteraceae , Bebidas/microbiologia , Bifidobacterium animalis/metabolismo , Microbioma Gastrointestinal , Extratos Vegetais/administração & dosagem , Poliaminas/metabolismo , Alimentos de Soja , Simbióticos/administração & dosagem , Fatores Etários , Idoso , Animais , Brasil , Linhagem Celular , Citocinas/metabolismo , Método Duplo-Cego , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Fatores de Tempo , Regulação para Cima
9.
Appl Microbiol Biotechnol ; 101(13): 5427-5437, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478490

RESUMO

Ginsenosides are believed to be the principal components behind the pharmacological actions of ginseng, and their bioactive properties are closely related to the type, position, and number of sugar moieties attached to the aglycone; thus, modification of the sugar chains may markedly change their biological activities. In this study, major protopanaxadiol type ginsenosides (PD) Rb1, Rc, and Rb2 were isolated from Panax ginseng and were transformed using two probiotic strains namely Bifidobacterium lactis Bi-07 and Lactobacillus rhamnosus HN001 to obtain specific deglycosylated ginsenosides. It was demonstrated that B. lactis transformed ginsenosides Rb1, Rc, and Rb2 to Rd within 1 h of fermentation and rare ginsenoside F2 by the conversion of Rd after 12-h fermentation. The maximum Rd concentration was 147.52 ± 1.45 µg/mL after 48-h fermentation as compared to 45.85 ± 0.71 µg/mL before fermentation. In contrast, L. rhamnosus transformed Rb1, Rc, and Rb2 into Rd as the final metabolite after 72-h fermentation. B. lactis displayed significantly (p < 0.05) higher ß-glucosidase activity against p-nitrophenyl-ß-glucopyranoside than L. rhamnosus and higher bioconversion efficiency during fermentation. The present study suggests that the fermentation of major PD type ginsenosides with B. lactis Bi-07 may serve as an effective means to afford bioactive deglycosylated ginsenosides and to create novel ginsenoside extracts.


Assuntos
Bifidobacterium animalis/metabolismo , Fermentação , Ginsenosídeos/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Sapogeninas/metabolismo , Bifidobacterium animalis/enzimologia , Ginsenosídeos/isolamento & purificação , Lacticaseibacillus rhamnosus/enzimologia , Panax/química , Panax/metabolismo , Probióticos/metabolismo , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA