Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38254662

RESUMO

The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.


Assuntos
Encefalopatias , Promoção da Saúde , Adulto , Idoso , Humanos , Fígado , Bilirrubina , Biliverdina , Heme , Heme Oxigenase (Desciclizante)
2.
J Comp Physiol B ; 193(3): 315-328, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995413

RESUMO

Changes in the physiological health of species are an essential indicator of changing conditions and environmental challenges. Reponses to environmental challenges can often induce stress, influence physiology, and change metabolism in organisms. Here we tested blood chemistry parameters indicative of stress and metabolic activity using an i-STAT point-of-care blood analyzer in seven populations of free-ranging rock iguanas exposed to varying levels of tourism and supplemental feeding. We found significant differences in blood chemistry (glucose, oxygen, carbon dioxide, hematocrit, hemoglobin, calcium, potassium, and biliverdin levels) among populations exposed to varying levels of tourism, and some variation between sexes and reproductive states. However, different variables are not directly related to one another, suggesting that the causal physiological pathways driving tourism-induced differences are influenced by mechanisms that are not detected by common analyses of blood chemistry. Future work should investigate upstream regulators of these factors affected by tourism. Regardless, these blood metrics are known to be both stress sensitive and related to metabolic activity, suggesting that exposure to tourism and associated supplemental feeding by tourists are generally driven by stress-related changes in blood chemistry, biliverdin, and metabolism.


Assuntos
Iguanas , Lagartos , Animais , Turismo , Biliverdina , Reprodução
3.
Small ; 19(23): e2207201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899444

RESUMO

Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Econazol/uso terapêutico , Biliverdina/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Imunoterapia , Água , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Pancreáticas
4.
mSphere ; 7(5): e0027022, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073800

RESUMO

Human rotavirus (HRV) is a major cause of childhood diarrhea in developing countries where widespread malnutrition contributes to the decreased oral vaccine efficacy and increased prevalence of other enteric infections, which are major concerns for global health. Neonatal gnotobiotic (Gn) piglets closely resemble human infants in their anatomy, physiology, and outbred status, providing a unique model to investigate malnutrition, supplementations, and HRV infection. To understand the molecular signatures associated with immune enhancement and reduced diarrheal severity by Escherichia coli Nissle 1917 (EcN) and tryptophan (TRP), immunological responses and global nontargeted metabolomics and lipidomics approaches were investigated on the plasma and fecal contents of malnourished pigs transplanted with human infant fecal microbiota and infected with virulent (Vir) HRV. Overall, EcN + TRP combined (rather than individual supplement action) promoted greater and balanced immunoregulatory/immunostimulatory responses associated with greater protection against HRV infection and disease in malnourished humanized piglets. Moreover, EcN + TRP treatment upregulated the production of several metabolites with immunoregulatory/immunostimulatory properties: amino acids (N-acetylserotonin, methylacetoacetyl-CoA), lipids (gamma-butyrobetaine, eicosanoids, cholesterol-sulfate, sphinganine/phytosphingosine, leukotriene), organic compound (biliverdin), benzenoids (gentisic acid, aminobenzoic acid), and nucleotides (hypoxathine/inosine/xanthine, cytidine-5'-monophosphate). Additionally, the levels of several proinflammatory metabolites of organic compounds (adenosylhomocysteine, phenylacetylglycine, urobilinogen/coproporphyrinogen) and amino acid (phenylalanine) were reduced following EcN + TRP treatment. These results suggest that the EcN + TRP effects on reducing HRV diarrhea in neonatal Gn pigs were at least in part due to altered metabolites, those involved in lipid, amino acid, benzenoids, organic compounds, and nucleotide metabolism. Identification of these important mechanisms of EcN/TRP prevention of HRV diarrhea provides novel targets for therapeutics development. IMPORTANCE Human rotavirus (HRV) is the most common cause of viral gastroenteritis in children, especially in developing countries, where the efficacy of oral HRV vaccines is reduced. Escherichia coli Nissle 1917 (EcN) is used to treat enteric infections and ulcerative colitis while tryptophan (TRP) is a biomarker of malnutrition, and its supplementation can alleviate intestinal inflammation and normalize intestinal microbiota in malnourished hosts. Supplementation of EcN + TRP to malnourished humanized gnotobiotic piglets enhanced immune responses and resulted in greater protection against HRV infection and diarrhea. Moreover, EcN + TRP supplementation increased the levels of immunoregulatory/immunostimulatory metabolites while decreasing the production of proinflammatory metabolites in plasma and fecal samples. Profiling of immunoregulatory and proinflammatory biomarkers associated with HRV perturbations will aid in the identification of treatments against HRV and other enteric diseases in malnourished children.


Assuntos
Infecções por Escherichia coli , Transplante de Microbiota Fecal , Desnutrição , Infecções por Rotavirus , Triptofano , Animais , Humanos , Lactente , Aminobenzoatos , Biliverdina/metabolismo , Colesterol , Coenzima A/metabolismo , Coproporfirinogênios , Citidina/metabolismo , Diarreia , Escherichia coli/metabolismo , Vida Livre de Germes , Inosina/metabolismo , Lipídeos , Desnutrição/terapia , Desnutrição/complicações , Metaboloma , Microbiota , Nucleotídeos/metabolismo , Fenilalanina/metabolismo , Rotavirus , Sulfatos , Suínos , Triptofano/farmacologia , Urobilinogênio/metabolismo , Xantinas
5.
Bioprocess Biosyst Eng ; 45(3): 563-571, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066674

RESUMO

Bilirubin, a natural intermediate in heme degradation, is a valuable Chinese medicine used in more than 50 traditional Chinese medicine (TCM) preparations. At present, bilirubin is mainly produced by extraction from pig bile, but a shortage of the raw material has increased the price, to about US$10,000/kg in the Chinese market. Biliverdin, the precursor of bilirubin, is more abundant and less expensive than bilirubin, but it is not used in TCM. Thus, the biotransformation of biliverdin by biliverdin reductase (BvdR) may be a practical way to produce bilirubin. In this study, the codon-optimized gene of biliverdin reductase (mbvdR) from the cyanobacterium Synechocystis was cloned into Escherichia coli BL21(DE3), and the conditions for BL21-mBvdR expressing BvdR were optimized. Resting BL21-mBvdR cells were employed as biocatalysts to biotransform biliverdin to bilirubin. At a concentration of biliverdin substrate of 450 mg/L in the reaction mixture, the bilirubin content in dry cells reached 20.8 ± 0.8 mg/g, with a conversion yield of 72.3%. Therefore, recombinant E. coli expressing BvdR can be applied to biotransform biliverdin to bilirubin, providing a potential alternative process for bilirubin production.


Assuntos
Biliverdina , Cianobactérias , Animais , Bilirrubina/metabolismo , Biliverdina/genética , Biliverdina/metabolismo , Biotransformação , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Suínos
6.
Int Immunopharmacol ; 74: 105634, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254959

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1) plays a critical protective role in various insults-induced acute lung injury (ALI) through its strong anti-inflammatory, anti-oxidant, and anti-apoptotic properties, but its protective role and mechanism on seawater aspiration-induced acute lung injury remains unclear. This study aimed to explore the therapeutic potential and mechanism of HO-1 to attenuate seawater aspiration-induced ALI in vivo and in vitro. METHODS: The viability and invasion of A549 cell were analyzed through cell counting kit-8 and lactate dehydrogenase release assay; the transcriptional level of inflammatory cytokines (TNF-α, IL-6, IL-8 and MCP-1) and cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C) in seawater-treated A549 cell were tested by qPCR; apoptotic cells were analyzed by flow cytometryd; HO-1mRNA and protein were determined by qPCR and western blotting; the fluorescent indicators (DCFH-DA, dihydroethidium, MitoSox Red and Fluo-4) were used to monitor generation of ROS and mitochondrial function. The lung wet/dry weight radio and lactate dehydrogenase activity, Sirius red staining, TUNEL assay and immunohistochemical staining with anti-pan Cytokeratin antibody were analyzed in seawater-drowning mice. The role of HO-1 on seawater-drowning pulmonary injury was explored via HO-1 activity inhibitors (Zinc protoporphyrin) in vitro and in vivo. RESULTS: Seawater exposure decreased the cellular viability, increased the production of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α), induced cellular apoptosis and inhibited the expression of cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C). Moreover, seawater exposure led to mitochondrial dysfunction in A549 cells. Supplement of HO-1 sepcific inducer (heme) or its catalytic product (biliverdin) significantly attenuated seawater-induced A549 damage and promoted cell proliferation. However, Zinc protoporphyrin abolished the beneficial effects of HO-1 on seawater drowning-induced pulmonary tissue injury. CONCLUSION: HO-1 attenuates seawater drowning-induced lung injury by its anti-inflammatory, anti-oxidative, and anti-apoptosis function.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Afogamento/metabolismo , Heme Oxigenase-1/metabolismo , Células A549 , Animais , Biliverdina/metabolismo , Proliferação de Células , Citocinas/genética , Humanos , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Água do Mar
7.
Adv Mater ; 31(16): e1900822, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30828877

RESUMO

Photothermal nanomaterials that integrate multimodal imaging and therapeutic functions provide promising opportunities for noninvasive and targeted diagnosis and treatment in precision medicine. However, the clinical translation of existing photothermal nanoagents is severely hindered by their unclear physiological metabolism, which makes them a strong concern for biosafety. Here, the utilization of biliverdin (BV), an endogenic near-infrared (NIR)-absorbing pigment with well-studied metabolic pathways, to develop photothermal nanoagents with the aim of providing efficient and metabolizable candidates for tumor diagnosis and therapy, is demonstrated. It is shown that BV nanoagents with intense NIR absorption, long-term photostability and colloidal stability, and high photothermal conversion efficiency can be readily constructed by the supramolecular multicomponent self-assembly of BV, metal-binding short peptides, and metal ions through the reciprocity and synergy of coordination and multiple noncovalent interactions. In vivo data reveal that the BV nanoagents selectively accumulate in tumors, locally elevate tumor temperature under mild NIR irradiation, and consequently induce efficient photothermal tumor ablation with promising biocompatibility. Furthermore, the BV nanoagents can serve as a multimodal contrast for tumor visualization through both photoacoustic and magnetic resonance imaging. BV has no biosafety concerns, and thereby offers a great potential in precision medicine by integrating multiple theranostic functions.


Assuntos
Biliverdina/metabolismo , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Biliverdina/química , Complexos de Coordenação/química , Xenoenxertos , Humanos , Raios Infravermelhos , Células MCF-7 , Manganês/química , Camundongos , Imagem Multimodal , Imagem Óptica , Técnicas Fotoacústicas , Fototerapia , Nanomedicina Teranóstica
8.
J Gen Virol ; 98(12): 2982-2992, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29087274

RESUMO

Bovine viral diarrhoea virus (BVDV) causes significant economic losses to the cattle industry worldwide. Previously, we demonstrated that heme oxygenase-1 (HO-1) can inhibit BVDV replication via an unknown molecular mechanism. To elucidate the mechanism involved, we assess whether the HO-1 downstream metabolites carbon monoxide (CO), biliverdin (BV) and iron affect BVDV replication. We treated Madin-Darby bovine kidney (MDBK) cells with an exogenous CO donor, CORM-2. We found that CORM-2 but not its inactive form (iCORM-2) inhibited BVDV replication in a dose-dependent and time duration-dependent manner, suggesting a CO-specific mediation of the CORM-2 antiviral effect. Direct incubation of BVDV with high-dose CORM-2 reduced virus titres, suggesting that CORM-2 attenuates BVDV growth by both physically inactivating virus particles in the extracellular environment and affecting intracellular BVDV replication, but mainly via an intracellular mechanism. Exogenous BV treatment, both post-infection and co-incubation with BVDV, inhibited BVDV replication in a dose-dependent manner, indicating that BV has potent antiviral activity against BVDV. Direct incubation of BVDV with BV had no significant effect on virus titres, indicating that BV is not virucidal and attenuates BVDV growth by affecting intracellular BVDV replication. Furthermore, BV was found to affect BVDV penetration but not attachment. However, increased iron via addition of FeCl3 did not interfere with BVDV replication. Collectively, the results of the present study demonstrate that the HO-1 metabolites BV and CO, but not iron, inhibit BVDV replication. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of BVDV replication but also suggest potential new control measures for future BVDV infection.


Assuntos
Antivirais/farmacologia , Biliverdina/farmacologia , Monóxido de Carbono/farmacologia , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Cloretos/farmacologia , Vírus da Diarreia Viral Bovina/crescimento & desenvolvimento , Vírus da Diarreia Viral Bovina/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Compostos Férricos/farmacologia , Heme Oxigenase-1/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Internalização do Vírus/efeitos dos fármacos
9.
Int J Mol Sci ; 15(10): 17974-99, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25299695

RESUMO

Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Acetilcisteína/farmacologia , Tecido Adiposo/citologia , Animais , Antioxidantes/farmacologia , Bilirrubina/farmacologia , Biliverdina/farmacologia , Células Cultivadas , Heme Oxigenase (Desciclizante)/deficiência , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos Organometálicos/farmacologia , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Acc Chem Res ; 47(8): 2291-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24873177

RESUMO

The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme to biliverdin, iron, and carbon monoxide (CO) in three successive oxygenation steps. Pathogenic bacteria require iron for survival and infection. Extracellular heme uptake from the host plays a critical role in iron acquisition and virulence. In the past decade, several HOs required for the release of iron from extracellular heme have been identified in pathogenic bacteria, including Corynebacterium diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The bacterial enzymes were shown to be structurally and mechanistically similar to those of the canonical eukaryotic HO enzymes. However, the recent discovery of the structurally and mechanistically distinct noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has expanded the reaction manifold of heme degradation. The distinct ferredoxin-like structural fold and extreme heme ruffling are proposed to give rise to the alternate heme degradation products in the S. aureus and M. tuberculosis enzymes. In addition, several "heme-degrading factors" with no structural homology to either class of HOs have recently been reported. The identification of these "heme-degrading proteins" has largely been determined on the basis of in vitro heme degradation assays. Many of these proteins were reported to produce biliverdin, although no extensive characterization of the products was performed. Prior to the characterization of the canonical HO enzymes, the nonenzymatic degradation of heme and heme proteins in the presence of a reductant such as ascorbate or hydrazine, a reaction termed "coupled oxidation", served as a model for biological heme degradation. However, it was recognized that there were important mechanistic differences between the so-called coupled oxidation of heme proteins and enzymatic heme oxygenation. In the coupled oxidation reaction, the final product, verdoheme, can readily be converted to biliverdin under hydrolytic conditions. The differences between heme oxygenation by the canonical and noncanonical HOs and coupled oxidation will be discussed in the context of the stabilization of the reactive Fe(III)-OOH intermediate and regioselective heme hydroxylation. Thus, in the determination of heme oxygenase activity in vitro, it is important to ensure that the reaction proceeds through successive oxygenation steps. We further suggest that when bacterial heme degradation is being characterized, a systems biology approach combining genetics, mechanistic enzymology, and metabolite profiling should be undertaken.


Assuntos
Bactérias/enzimologia , Biliverdina/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme/metabolismo , Biliverdina/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Corynebacterium diphtheriae/enzimologia , Enzimas , Heme/química , Heme Oxigenase (Desciclizante)/química , Hidroxilação , Ferro/química , Ferro/metabolismo , Neisseriaceae/enzimologia , Oxirredução , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Yin-Yang
11.
J Exp Biol ; 216(Pt 14): 2632-40, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23531827

RESUMO

Immune function can be modulated by multiple physiological factors, including nutrition and reproductive state. Because these factors can vary throughout an individual's lifetime as a result of environmental conditions (affecting nutrition) or life-history stage (e.g. entering the adult reproduction stage), we must carefully examine the degree to which developmental versus adult conditions shape performance of the immune system. We investigated how variation in dietary access to carotenoid pigments - a class of molecules with immunostimulatory properties that females deposit into egg yolks - during three different developmental time points affected adult immunological and reproductive traits in female mallard ducks (Anas platyrhynchos). In males and females of other avian species, carotenoid access during development affects carotenoid assimilation ability, adult sexual ornamentation and immune function, while carotenoid access during adulthood can increase immune response and reproductive investment (e.g. egg-laying capacity, biliverdin deposition in eggshells). We failed to detect effects of developmental carotenoid supplementation on adult immune function [phytohemagglutinin-induced cutaneous immune response, antibody production in response to the novel antigen keyhole limpet hemocyanin (KLH), or oxidative burst, assessed by changes in circulating nitric oxide levels], carotenoid-pigmented beak coloration, ovarian development, circulating carotenoid levels or concentration of bile pigments in the gall bladder. However, we did uncover positive relationships between circulating carotenoid levels during adulthood and KLH-specific antibody production, and a negative relationship between biliverdin concentration in bile and KLH-specific antibody production. These results are consistent with the view that adult physiological parameters better predict current immune function than do developmental conditions, and highlight a possible, previously unstudied relationship between biliverdin and immune system performance.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/imunologia , Biliverdina/metabolismo , Carotenoides/metabolismo , Dieta , Patos/imunologia , Fatores Etários , Análise de Variância , Animais , Carotenoides/administração & dosagem , Feminino , Hemocianinas/imunologia , Óxido Nítrico/metabolismo , Fotoperíodo , Explosão Respiratória/imunologia , Pele/imunologia
12.
Eur J Cardiothorac Surg ; 42(6): 1035-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22648925

RESUMO

OBJECTIVES: Biliverdin (BV), one of the byproducts of heme catalysis through the heme oxygenase system, is a known scavenger of the reactive oxygen species. We hypothesized that adding BV to the perfusate and cold storage solution could protect rat lung grafts from oxidative injuries via its antioxidant efficacies. METHODS: Orthotopic left lung transplantation was performed in a syngenic Lewis-to-Lewis rat combination under 100% oxygen. Grafts were preserved in low-potassium dextran (LPD; Perfadex) at 4°C for 6 h with or without supplementation of 1 or 10 µM of BV into LPD. RESULTS: Prolonged cold storage and reperfusion resulted in a considerable deterioration of graft functions associated with massive apoptosis in the grafts after reperfusion. The untreated grafts exhibited the early up-regulations of mRNA for inflammatory mediators and an increase in a marker of lipid peroxidation, showing oxidative injuries. Although BV supplementation of LPD at a lower concentration (1 µM) did not improve the graft gas exchange, the grafts treated with BV (10 µM) showed a significant improvement of oxygenation and less inflammatory responses as well as reduced lipid peroxidation and apoptosis. Although the rapid activations of mitogen-activated protein kinases (MAPKs) were seen 30 min after reperfusion in the grafts stored in control LPD, BV treatment significantly reduced phosphorylated-MAPK protein expression. CONCLUSIONS: This study demonstrates that the exposure of the lung grafts to BV during cold storage can impart potent cytoprotective effects to lung cold ischaemia/reperfusion injury and significantly improve the lung graft function following extended cold preservation and transplantation by the mechanism of a reduction in oxidative injury and following inflammatory events.


Assuntos
Biliverdina , Isquemia Fria , Sequestradores de Radicais Livres , Transplante de Pulmão/métodos , Soluções para Preservação de Órgãos , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Biomarcadores/metabolismo , Western Blotting , Citratos , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiologia , Masculino , Estresse Oxidativo , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
13.
Clin Exp Rheumatol ; 30(1): 73-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22325451

RESUMO

OBJECTIVES: Heme oxygenase-1 (HO-1) which degrades Heme to free iron, biliverdin and carbon monoxide (CO) plays an important role in inflammation. There are, however, conflicting data concerning the role of HO-1 in rheumatoid arthritis (RA) and the therapeutic potential of individual heme degradation products remains to be determined. We therefore investigated the effect of CO and biliverdin upon therapeutic administration in the murine collagen induced arthritis (CIA) model of RA. METHODS: CIA was induced in DBA/1 mice. Anti-CII antibody levels were determined by ELISA. Mice were scored for paw swelling and grip strength. After the first clinical signs of arthritis one group of animals was treated with biliverdin, the second group was treated with CO. After 60 days all animals were sacrificed and analysed for histomorphological signs of arthritis. RESULTS: All animals immunised with CII developed serum anti-CII antibodies. Antibody levels were decreased in the CO-treated group. Both, Biliverdin and the CO-treated animals, showed an improvement in clinical disease activity. Histological analysis revealed significantly less inflammation, erosion and reduced numbers of osteoclasts in CO-treated animals only, whereas cartilage degradation was prevented in both biliverdin and CO-treated animals. CONCLUSIONS: Our data demonstrate a beneficial effect of CO, in particular, and biliverdin, on inflammation and bone destruction in the CIA mouse model.


Assuntos
Artrite Experimental/tratamento farmacológico , Biliverdina/uso terapêutico , Monóxido de Carbono/uso terapêutico , Heme Oxigenase-1/metabolismo , Articulações/efeitos dos fármacos , Administração por Inalação , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Biliverdina/administração & dosagem , Biliverdina/metabolismo , Monóxido de Carbono/administração & dosagem , Monóxido de Carbono/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Articulações/metabolismo , Articulações/patologia , Camundongos
14.
Semin Fetal Neonatal Med ; 15(3): 141-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19932645

RESUMO

Despite a century of research, several clinically relevant areas of bilirubin biochemistry remain controversial, poorly understood, or unrecognized. These include: (i) The structure and molecularity of bilirubin under physiological environments such as membranes, brain tissue and when bound to proteins. Related to this is the large number of structurally different bilirubin species that may occur in blood under pathological conditions and their potential effects on measurements of bilirubin and free bilirubin. (ii) The mechanism of phototherapy, the neurotoxicity of the photoisomers produced and their influence on measurements of bilirubin and free bilirubin. (iii) The role of membrane transporters in the passage of unconjugated bilirubin across the placenta, intestine, vascular epithelium, blood-brain barrier, and into the liver. (iv) Biochemical mechanisms of bilirubin toxicity, pharmacologic prevention of kernicterus, the contribution of bilirubin to antioxidant defenses, and the practical value of free bilirubin measurements for identifying infants at most risk of kernicterus.


Assuntos
Bilirrubina/química , Bilirrubina/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Hiperbilirrubinemia Neonatal/metabolismo , Animais , Bilirrubina/sangue , Biliverdina/sangue , Humanos , Hiperbilirrubinemia Neonatal/prevenção & controle , Recém-Nascido , Fígado/metabolismo , Modelos Moleculares , Fototerapia
15.
Indian J Biochem Biophys ; 46(1): 73-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19374257

RESUMO

Bilirubin above a threshold level is toxic to human system and is excreted in urinary and through gastrointestinal tract. The role of bilirubin as antioxidant is debatable. This paper aims at elucidating the role of bilirubin as an antioxidant in neonatal jaundice patients. It is observed that bilirubin up to 6 mg/dl in blood acts as an antioxidant and above 12.5 mg/dl is strongly prooxidant. Phototherapy is the accepted therapeutic management of neonatal jaundice and has been shown to enhance the oxidative stress. Approaches have been taken to formulate a herbal medication which will reduce bilirubin level in the neonates without inducing additional damages. The ethanolic extract of sweet lime peel, administered orally at a dose of 72 microg is found to reduce the oxidative stress in erythrocytes of phenylhydrazine-induced jaundiced rats treated with phototherapy.


Assuntos
Antioxidantes/uso terapêutico , Bilirrubina/metabolismo , Citrus aurantiifolia , Icterícia Neonatal/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Bilirrubina/sangue , Bilirrubina/química , Biliverdina/sangue , Feminino , Glucosefosfato Desidrogenase/metabolismo , Humanos , Recém-Nascido , Icterícia Neonatal/induzido quimicamente , Peroxidação de Lipídeos , Masculino , Oxidantes/sangue , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/sangue , Fosfogluconato Desidrogenase/metabolismo , Ratos , Ratos Wistar , Superóxidos/metabolismo , Transcetolase/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(13): 5171-6, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19286972

RESUMO

Glutathione (GSH) and bilirubin are prominent endogenous antioxidant cytoprotectants. Despite tissue levels that are thousands of times lower than GSH, bilirubin is effective because of the biosynthetic cycle wherein it is generated from biliverdin by biliverdin reductase (BVR). When bilirubin acts as an antioxidant, it is oxidized to biliverdin, which is immediately reduced by BVR to bilirubin. Why does the body employ both of these 2 distinct antioxidant systems? We show that the water-soluble GSH primarily protects water soluble proteins, whereas the lipophilic bilirubin protects lipids from oxidation. Mice with deletion of heme oxygenase-2, which generates biliverdin, display greater lipid than protein oxidation, while the reverse holds for GSH depletion. RNA interference depletion of BVR increases oxidation of lipids more than protein. Depletion of BVR or GSH augments cell death in an oxidant-specific fashion.


Assuntos
Bilirrubina/fisiologia , Glutationa/fisiologia , Antioxidantes , Bilirrubina/deficiência , Bilirrubina/metabolismo , Biliverdina/metabolismo , Citoproteção , Glutationa/deficiência , Glutationa/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Peroxidação de Lipídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas/metabolismo
17.
Exp Eye Res ; 87(3): 268-78, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18602389

RESUMO

Heme oxygenase (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins. HO-2 deletion leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. We examined the consequences of HO-2 deletion on hemangiogenesis and lymphangiogenesis in the model of suture-induced inflammatory neovascularization. An 8.0 silk suture was placed at the corneal apex of wild type and HO-2 null mice. Neovascularization was assessed by vital microscopy and quantified by image analysis. Hemangiogenesis and lymphangiogenesis were determined by immunofluorescence staining using anti-CD31 and anti-LYVE-1 antibodies, respectively. Inflammation was quantified by histology and myeloperoxidase activity. The levels of HO-1 expression and inflammatory cytokines were determined by real time PCR and ELISA, respectively. Corneal sutures produced a consistent inflammatory response and a time-dependent neovascularization. The response in HO-2 null mice was associated with a greater increase compared to the wild type in the number of leukocytes (827,600+/-129,000 vs. 294,500+/-57,510; p<0.05), neovessels measured by vital microscopy (21.91+/-1.05 vs. 12.77+/-1.55 mm; p<0.001) 4 days after suture placement. Hemangiogenesis but not lymphangiogenesis was more pronounced in HO-2 null mice compared to wild type mice. Induction of HO-1 in sutured corneas was greatly attenuated in HO-2 null corneas and treatment with biliverdin diminished the exaggerated inflammatory and neovascular response in HO-2 null mice. The demonstration that the inflammatory responses, including expression of proinflammatory proteins, inflammatory cell influx and hemangiogenesis are exaggerated in HO-2 knockout mice strongly supports the notion that the HO system is critical for controlling the inflammatory and neovascular response in the cornea. Hence, pharmacological amplification of this system may constitute a novel therapeutic strategy for the treatment of corneal disorders associated with excessive inflammation and neovascularization.


Assuntos
Biliverdina/uso terapêutico , Neovascularização da Córnea/prevenção & controle , Ceratite/prevenção & controle , Animais , Córnea/enzimologia , Neovascularização da Córnea/enzimologia , Neovascularização da Córnea/patologia , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Feminino , Heme Oxigenase (Desciclizante)/deficiência , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/fisiologia , Heme Oxigenase-1/metabolismo , Ceratite/enzimologia , Ceratite/patologia , Masculino , Camundongos , Camundongos Knockout , Peroxidase/metabolismo
18.
J Thromb Haemost ; 5(12): 2537-46, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17927807

RESUMO

BACKGROUND: Heme oxygenase-1 (HO-1), by exerting anti-inflammatory, antiproliferative, antiapoptotic and antioxidant effects in the vasculature, protects against atherosclerosis and post-transplant vasculopathy. We noted the overlap between the effects of HO-1 and those attributed to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins). This led to an investigation of the role of HO-1 in statin-mediated cytoprotection in primary human endothelial cells (ECs), and the ability of Kruppel-like factor 2 (KLF2) to regulate HO-1 function. METHODS/RESULTS: Treatment of human umbilical vein and aortic ECs with atorvastatin significantly upregulated HO-1 promoter activity, mRNA expression and protein expression, increasing HO-1 enzymatic activity as shown by raised intracellular bilirubin IXalpha. This effect was indirect, dependent upon inhibition of HMG-CoA reductase and geranylgeranylation, and independent of nitric oxide or changes in mRNA stability. Atorvastatin protected ECs against the generation of reactive oxygen species and H(2)O(2)-induced injury. HO-1 inhibition, with small interfering RNA (siRNA) or zinc protoporphyrin IX, abrogated atorvastatin-mediated cytoprotection. Atorvastatin upregulated KLF2 expression, whereas KLF2 siRNA attenuated statin-induced HO-1 and its associated antioxidant cytoprotective effects. Iron chelation, adenoviral-mediated overexpression of ferritin or supplementation of culture media with biliverdin reversed the inhibitory effects of HO-1 and KLF2 siRNA, suggesting that bile pigments and ferritin mediate the antioxidant actions of statin-induced HO-1. CONCLUSIONS: We have identified a novel link between KLF2 and HO-1 in human vascular ECs, demonstrating that atorvastatin-mediated HO-1 upregulation, and its associated antioxidant effect, is KLF2-dependent. The relationship between KLF2 and HO-1 is likely to represent an important component of the vasculoprotective profile of statins.


Assuntos
Antioxidantes/farmacologia , Citoproteção , Células Endoteliais/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Ácidos Heptanoicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirróis/farmacologia , Atorvastatina , Bilirrubina/metabolismo , Biliverdina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Ferritinas/genética , Ferritinas/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Quelantes de Ferro/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Ácido Mevalônico/farmacologia , Oxidantes/farmacologia , Prenilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Protoporfirinas/farmacologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Terpenos/farmacologia
19.
Przegl Lek ; 64(4-5): 360-2, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-17724914

RESUMO

Heme oxygenase (HO) is the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and biliverdin. To date three mammalian HO isozymes have been identified, and only one of them (HO-1) is inducible. The products of HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in the liver against different noxious stimuli. The results of experimental data show that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen.


Assuntos
Heme Oxigenase-1/metabolismo , Heme/metabolismo , Hepatopatias/enzimologia , Hepatopatias/prevenção & controle , Fígado/enzimologia , Acetaminofen/efeitos adversos , Animais , Biliverdina/metabolismo , Monóxido de Carbono/metabolismo , Catálise/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Citoproteção/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Indução Enzimática , Alho/química , Heme/química , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/efeitos dos fármacos , Humanos , Isoenzimas/genética , Fígado/efeitos dos fármacos , Estresse Oxidativo , Substâncias Protetoras/farmacologia
20.
J Biol Chem ; 279(5): 3426-33, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14615478

RESUMO

Candida albicans is an opportunistic pathogen that has adapted uniquely to life in mammalian hosts. One of the host factors recognized by this yeast is hemoglobin, which binds to a specific cell surface receptor. In addition to its regulating the expression of adhesion receptors on the yeast, we have found that hemoglobin induces the expression of a C. albicans heme oxygenase (CaHmx1p). Hemoglobin transcriptionally induces the CaHMX1 gene independent of the presence of inorganic iron in the medium. A Renilla luciferase reporter driven by the CaHMX1 promoter demonstrated rapid activation of transcription by hemoglobin and (cobalt protoporphyrin IX) globin but not by apoglobin or other proteins. In contrast, iron deficiency or exogenous hemin did not activate the reporter until after 3 h, suggesting that induction of the promoter by hemoglobin is mediated by receptor signaling rather than heme or iron flux into the cell. As observed following disruption of the Saccharomyces cerevisiae ortholog, HMX1, a CaHMX1 null mutant was unable to grow under iron restriction. This suggests a role for CaHmx1p in inorganic iron acquisition. CaHMX1 encodes a functional heme oxygenase. Exogenous heme or hemoglobin is exclusively metabolized to alpha-biliverdin. CaHMX1 is required for utilization of these exogenous substrates, indicating that C. albicans heme oxygenase confers a nutritional advantage for growth in mammalian hosts.


Assuntos
Candida albicans/enzimologia , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase (Desciclizante)/química , Hemoglobinas/química , Trypanosoma brucei brucei/patogenicidade , Sequência de Aminoácidos , Animais , Biliverdina/química , Cromatografia Líquida de Alta Pressão , Cobalto/química , DNA Complementar/metabolismo , Genes Reporter , Heme/química , Heme Oxigenase (Desciclizante)/metabolismo , Hemina/química , Humanos , Hidrólise , Ferro/química , Luciferases/metabolismo , Camundongos , Modelos Químicos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA