Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345601

RESUMO

Design projects, particularly those related to assistive technology, offer unparalleled educational opportunities for undergraduate students to synthesize engineering knowledge with a clinically driven need to produce a product that can improve quality of life. Such projects are most effective when engineering, clinical, and business perspectives are considered throughout. However, the logistics of successfully implementing such interdisciplinary projects can be challenging. This paper presents an auto-ethnography of 12 undergraduate design team projects in assistive technology performed by 87 students from five majors (including engineering, business, and clinical students) over the course of 5 years. The overarching goal of our work was to establish an undergraduate integrated design experience at a university in the absence of a dedicated biomedical engineering major. The focus of this experience was to foster the creation of student-led prototypes to address real-world problems for people with disabilities while keeping commercialization potential at the forefront throughout. Student participation demonstrated a clear enthusiasm for completing biomedical engineering-themed projects. To encourage the implementation of similar approaches at universities where a biomedical engineering major does not exist, we identify common obstacles that can arise and present strategies for mitigating these challenges, as well as effective approaches for catalyzing cross-disciplinary collaborations. High impact practices include close involvement of end-users in the design process; cross-disciplinary team composition (e.g., engineering, business, and health sciences students); and choosing cross-disciplinary leads for project management. Teams experienced a high degree of success with all 12 teams producing functional prototypes. We conclude that at universities that do not offer a biomedical engineering major, health-focused integrated design experiences offer students important interdisciplinary perspectives, including a holistic approach to project implementation. Furthermore, for many students, these projects ultimately served as a gateway to subsequent careers and graduate study in biomedical engineering.


Assuntos
Qualidade de Vida , Estudantes , Humanos , Engenharia , Engenharia Biomédica/educação , Bioengenharia
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37931145

RESUMO

In recent years, more frequent and prolonged periods of high ambient temperature in summer compromised poultry production worldwide. This study was conducted to investigate the effects of compound bioengineering protein (CBP) on the growth performance and intestinal health of broilers under high ambient temperatures. A total of 400 one-day-old Arbor Acres birds were randomly distributed into five treatment groups: control group (CON) with basal diet, or a basal diet supplemented with CBP 250, 500, 750, and 1,000 mg/kg, respectively. The trial lasted 42 d, all birds were raised at normal ambient temperature for the first 21 d and then subjected to the artificial hyperthermal condition with the temperature at 32 ±â€…2 °C and relative humidity at 60 ±â€…5% during 22 to 42 d. Dietary CBP supplementation improved the growth performance and serum antioxidant capacity (total antioxidant capacity and total superoxide dismutase), and decreased serum cortisol, aminotransferase, and alkaline phosphatase of broilers. Dietary CBP inclusion enhanced intestinal barrier function by promoting intestinal morphology and reducing intestinal permeability (diamine oxidase), increased the intestinal antioxidant capacity by elevating glutathione peroxidase activity in the duodenum, reducing malondialdehyde content in the jejunum. Dietary CBP supplementation also alleviated intestinal inflammation by decreasing interleukin (IL)-6 content in the jejunum and ileum, promoting IL-10 levels in the ileum, down-regulating the mRNA abundance of intestinal inflammatory-related genes interferon-gamma (IFN-γ) in the duodenum and up-regulating IL-10 in the jejunum. Additionally, CBP increased the population of total bacteria and Lactobacillus in cecal chyme. Collectively, dietary CBP inclusion exerts beneficial effects on the broilers, which are reflected by enhancing antioxidant capacity, promoting intestinal barrier function, ameliorating intestinal immune response, and regulating intestinal bacteria, thus improving the growth performance of broilers under high-temperature conditions. In general, 750 mg/kg CBP supplementation is more effective.


Extreme high ambient temperature in summer occurs frequently around the world, which causes severe economic losses in the broiler industry, and impairs food safety. Improving the high-temperature resistance of broilers is beneficial to the sustainable development of the broiler industry. Dietary supplementation of anti-stress additives is an effective way to prevent high-temperature stress in broilers. Antimicrobial peptides are excellent anti-stress additives that exhibit multiple biological functions, such as against microbial infection, improving antioxidant capacity and immune function, and perfecting the intestinal health of broilers. In the present study, we added the compound bioengineering protein (CBP) (two bioengineering proteins containing functional fragments of antimicrobial peptides) in diets to investigate the potential protective effects of CBP for broilers under high temperatures. Our present results indicate that dietary CBP supplementation enhances the growth performance of broilers exposed to high temperatures. This improvement is attributed to the increased antioxidant capacity, improved intestinal barrier function, ameliorated intestinal immune function, and improved intestinal bacteria. These results provide a theoretical foundation for CBP utilization in diets to ameliorate growth performance and intestinal health of broilers under high temperatures.


Assuntos
Antioxidantes , Galinhas , Animais , Galinhas/fisiologia , Antioxidantes/metabolismo , Interleucina-10 , Temperatura , Suplementos Nutricionais/análise , Dieta/veterinária , Bioengenharia , Ração Animal/análise
3.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279904

RESUMO

Nutraceuticals are defined as food or food components with therapeutic capabilities that have few side effects and are regarded as a natural therapy for preventing the onset of several life-threatening illnesses. The use of microbial cell factories to produce nutraceuticals is considered to be sustainable and promising for meeting market demand. Among the diverse strategies for optimizing microbial cell factories, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system has emerged as a valuable tool for gene integration, deletion, activation, and downregulation. With the advent of multiplexed and precise CRISPR strategies, optimized microbial cell factories are revolutionizing the yield of nutraceuticals. This review focuses on the development of highly adaptable CRISPR strategies to optimize the production in microbial cell factories of some important nutraceuticals (belonging to the class of carotenoids, flavonoids, stilbenoids, polysaccharides, and nonprotein amino acids). Further, we highlighted current challenges related to the efficiency of CRISPR strategies and addressed potential future directions to fully harness CRISPR strategies to make nutraceutical synthesis in microbial cell factories an industrially favorable method.


Assuntos
Bioengenharia , Engenharia Metabólica , Biologia Sintética , Suplementos Nutricionais
4.
J Neural Eng ; 20(3)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224804

RESUMO

One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.


Assuntos
Bioengenharia , Terapia por Estimulação Elétrica , Neurônios , Neurônios/fisiologia , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos
5.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768578

RESUMO

Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.


Assuntos
Glycine max , Óleo de Soja , Óleo de Soja/genética , Glycine max/genética , Sementes/genética , Ácidos Graxos , Bioengenharia
6.
Curr Opin Plant Biol ; 71: 102313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36411187

RESUMO

Tailoring the structure of cellulose, hemicellulose or pectin in plant cell walls can modulate growth, disease resistance, biomass yield and other important agronomic traits. Recent advances in the biosynthesis of microfibrils and matrix polysaccharides force us to re-examine old assumptions about the assembly and functions of cell wall components. The engineering of living or hybrid materials in microorganisms could be adapted to plant biopolymers or to inspire the development of new plant-based composites. High-throughput cellular factories and synthetic biology toolkits could unveil the biological roles and biotechnological potential of the large, unexplored space of carbohydrate-active enzymes. Increasing automation and enhanced carbohydrate detection methods are unlocking new routes to design plant glycans for a sustainable bioeconomy.


Assuntos
Celulose , Polissacarídeos , Plantas/genética , Pectinas , Parede Celular/química , Bioengenharia
7.
Biochem Mol Biol Educ ; 50(5): 510-518, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929640

RESUMO

Based on recent education reform guidelines to prepare professionals who are able to handle new technological, economic, social, and environmental challenges, pedagogical modifications are deemed necessary by the educators. Specifically, in biology, the rapid changes in the content and biological products demand changes in the curriculum. We aim to address this current need by providing an example of a course that was redesigned to meet the current trends of biological engineering education. In this course-based undergraduate research experience (CURE), learning objectives and possible outcomes were developed and assessment mapping was performed to align the course objectives with the Accreditation Board for Engineering and Technology (ABET) recommendations. A description of how one can assess authentic inquiry courses while adhering to the recommendations are discussed. For example, in this particular course, students completed weekly reflection assignments, maintained lab notebooks that were graded every week, presented their research to their peers at the end of the semester, and submitted a final paper to be graded. "Holistic" engineering is crucial for the all-around development of a 21st century engineer. Altering the traditional lecturing with more hands-on learning is crucial for the development of professional and communication skills of students. Such alterations could lead to the production of well-rounded life-long learners to serve the upcoming world.


Assuntos
Produtos Biológicos , Currículo , Bioengenharia , Engenharia , Humanos , Estudantes
8.
Talanta ; 243: 123374, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298927

RESUMO

Green-synthesized nanobiomaterials can be engineered as smart nanomedicine platforms for diagnostic and therapeutic purposes in medicine. Herein, we investigated the bioengineering of silver nanoparticles (AgNPs) and evaluated their physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Characterization of the AgNPs was performed utilizing UV-visible, transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR). The spherical shaped AgNPs were proven by TEM and SEM techniques. Moreover, the XRD diffraction patterns demonstrated that the nanoparticles were in a crystalline state. The DLS represented the hydrodynamic particle size of the NPs at 49.62 nm at a pH of 9. The calculated minimum inhibitory concentration (MIC) of AgNPs toward Staphylococcus aureus (ATCC 25923) was 8 µg mL-1, which was almost similar to tetracycline by the value of 4 µg mL-1. Moreover, the minimum bactericidal concentration (MBC) of AgNPs was 64 µg mL-1, which was significantly less than the determined value of 256 µg mL-1 for tetracycline. Considering the pathogenic and standard S. aureus, the evaluated concentrations of AgNPs and tetracycline showed significant biofilm inhibitory performance. Furthermore, the bioengineered AgNPs exhibited significant anticoagulant activity at 500 µg mL-1 compared to saline (P < 0.001). In addition, the biogenic AgNPs inhibited 69.73 ± 0.56% of DPPH free radicals at 500 µg mL-1, indicating considerable antioxidant potential.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Anticoagulantes/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bioengenharia , Biofilmes , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
9.
Biomed Pharmacother ; 147: 112683, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144050

RESUMO

Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose/fisiologia , Bioengenharia , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Imunomodulação/fisiologia , Técnicas In Vitro , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
10.
Bioengineered ; 13(2): 3350-3361, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048792

RESUMO

The COVID-19 new variants spread rapidly all over the world, and until now scientists strive to find virus-specific antivirals for its treatment. The main protease of SARS-CoV-2 (Mpro) exhibits high structural and sequence homology to main protease of SARS-CoV (93.23% sequence identity), and their sequence alignment indicated 12 mutated/variant residues. The sequence alignment of SARS-CoV-2 main protease led to identification of only one mutated/variant residue with no significant role in its enzymatic process. Therefore, Mpro was considered as a high-profile drug target in anti-SARS-CoV-2 drug discovery. Apigenin analogues to COVID-19 main protease binding were evaluated. The detailed interactions between the analogues of Apigenin and SARS-CoV-2 Mpro inhibitors were determined as hydrogen bonds, electronic bonds and hydrophobic interactions. The binding energies obtained from the molecular docking of Mpro with Boceprevir, Apigenin, Apigenin 7-glucoside-4'-p-coumarate, Apigenin 7-glucoside-4'-trans-caffeate and Apigenin 7-O-beta-d-glucoside (Cosmosiin) were found to be -6.6, -7.2, -8.8, -8.7 and -8.0 kcal/mol, respectively. Pharmacokinetic parameters and toxicological characteristics obtained by computational techniques and Virtual ADME studies of the Apigenin analogues confirmed that the Apigenin 7-glucoside-4'-p-coumarate is the best candidate for SARS-CoV-2 Mpro inhibition.


Assuntos
Antivirais/farmacologia , Apigenina/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sequência de Aminoácidos , Antivirais/química , Antivirais/farmacocinética , Apigenina/química , Apigenina/farmacocinética , Bioengenharia , COVID-19/virologia , Simulação por Computador , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/química , Glucosídeos/farmacocinética , Glucosídeos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fitoterapia , Domínios Proteicos , SARS-CoV-2/genética
11.
Dermatol Online J ; 27(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34755973

RESUMO

Management of post-operative soft-tissue defects on the lower legs is challenging owing to arterial and venous insufficiency, poor skin quality including epidermal and dermal atrophy, insufficient tissue laxity, and increased risk of infection. This paper highlights the management of post-operative soft-tissue defects on the lower extremity that cannot be closed primarily or by reconstruction with a local flap. A systematic review of the literature was performed using the National Library of Medicine (NLM) PubMed online database. Articles were included if they reported the management of post-operative lower extremity soft-tissue defects with secondary intention healing, full-thickness skin graft, split-thickness skin grafts, or skin substitutes. Sixty-three articles were included for analysis. There are several options for managing surgical defects on the lower legs and the method chosen should depend on various factors, including the quality of the skin, vascularity and size of the defect, medical history of the patient, and the experience of the surgeon.


Assuntos
Extremidade Inferior/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Complicações Pós-Operatórias/terapia , Transplante de Pele/métodos , Pele Artificial , Terapia de Tecidos Moles , Bioengenharia , Humanos , Extremidade Inferior/fisiopatologia , Cicatrização
12.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209892

RESUMO

Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.


Assuntos
Antígenos CD/metabolismo , Bioengenharia/métodos , Ferritinas/metabolismo , Neoplasias/metabolismo , Receptores da Transferrina/metabolismo , Animais , Portadores de Fármacos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Ferritinas/genética , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas , Neoplasias/tratamento farmacológico
13.
Adv Drug Deliv Rev ; 176: 113901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331989

RESUMO

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão , Modelos Biológicos , Medicamentos para o Sistema Respiratório/uso terapêutico , Animais , Bioengenharia , Humanos , Ciência Translacional Biomédica
14.
Transgenic Res ; 30(5): 649-660, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33956271

RESUMO

In traditional, small-scale agriculture in the Andes, potatoes are frequently co-cultivated with the Andean edible tuber Tropaeolum tuberosum, commonly known as mashua, which is believed to exert a pest and disease protective role due to its content of the phenylalanine-derived benzylglucosinolate (BGLS). We bioengineered the production of BGLS in potato by consecutive generation of stable transgenic events with two polycistronic constructs encoding for expression of six BGLS biosynthetic genes from Arabidopsis thaliana. First, we integrated a polycistronic construct coding for the last three genes of the pathway (SUR1, UGT74B1 and SOT16) into potato driven by the cauliflower mosaic virus 35S promoter. After identifying the single-insertion transgenic event with the highest transgene expression, we stacked a second polycistronic construct coding for the first three genes in the pathway (CYP79A2, CYP83B1 and GGP1) driven by the leaf-specific promoter of the rubisco small subunit from chrysanthemum. We obtained transgenic events producing as high as 5.18 pmol BGLS/mg fresh weight compared to the non-transgenic potato plant producing undetectable levels of BGLS. Preliminary bioassays suggest a possible activity against Phytophthora infestans, causing the late blight disease and Premnotrypes suturicallus, referred to as the Andean potato weevil. However, we observed altered leaf morphology, abnormally thick and curlier leaves, reduced growth and tuber production in five out of ten selected transgenic events, which indicates that the expression of BGLS biosynthetic genes has an undesirable impact on the potato. Optimization of the expression of the BGLS biosynthetic pathway in potato is required to avoid alterations of plant development.


Assuntos
Solanum tuberosum , Bioengenharia , Resistência à Doença/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Tiocianatos , Tioglucosídeos
15.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801752

RESUMO

Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactococcus/efeitos dos fármacos , Mastite Bovina/microbiologia , Nisina/química , Staphylococcus/efeitos dos fármacos , Animais , Bioengenharia/métodos , Bovinos , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Peptídeos/química , Engenharia de Proteínas/métodos
16.
Crit Rev Biotechnol ; 41(5): 749-766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33626996

RESUMO

The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Bioengenharia , Hidrocarbonetos , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
17.
Bioprocess Biosyst Eng ; 44(6): 1253-1262, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33606108

RESUMO

In this study, simple and green route approach was applied for the synthesis gold nanoparticles (AuNPs) containing an aqueous extract of Cynodon dactylon L. Pers., (C. dactylon). The synthesized AuNPs were characterized using spectral and microscopic analysis. The changes in the color pattern were observed upon synthesis by UV-vis spectrophotometer with a peak of 530 nm. The FT-IR, XRD, SEM, and TEM were used to analyze the crystal nature and morphology of the green synthesized AuNPs. The C. dactylon-loaded AuNPs in different concentrations (0.625-100 µg/ml) were used to assess cytotoxicity activity against MCF-7 cell line and where the IC50 was found to be 31.34 µg/ml by MTT assay. The C. dactylon-AuNPs were significantly increased reactive oxygen species (ROS) generation, DNA fragmentation, and mitochondrial membrane changes observed by dichlorodihydroflurescenin diacetate (DCFH-DA), 4',6-diamidino-2-phenylindole (DAPI), Rhodamine-123, and acridine orange (AO)/ethidium bromide (EtBr) staining assay. Besides the microbial study revealed that C. dactylon-AuNPs exhibited significant antibacterial activity against clinically isolated pathogenic bacteria such as Enterobacter cloacae, Staphylococus Haemolytics, Staphylococcus petrasii subsp. Pragensis and Bacillus cereus with a zone of inhibition 13, 12, 13 and 12 mm, respectively. It could be concluded that C. dactylon has the ability to be involved in the biosynthesis of AuNPs, and the pharmacological studies proved the promising cytotoxic effect on MCF-7 cell line and pathogenic bacterial species.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Cynodon/química , Citotoxinas , Ouro , Nanopartículas Metálicas , Extratos Vegetais/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bioengenharia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
18.
J Hazard Mater ; 406: 124440, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33302188

RESUMO

Sulfonamide antibiotics (SAs) are excreted into the ecosystem unchanged through feces and urine because of their low adsorption and degradation in the guts of humans and animals. In this study, a novel whole-cell biocatalyst with fungal laccase on the cell surface of Escherichia coli Nissle 1917 was developed to degrade sulfadiazine (SDZ). Engineered strain EcN-IL showed laccase enzyme activity of 2 ± 1 U/mg dry weight of cell and degraded 37 ± 1% of SDZ at temperature 40 °C and pH 5 within 3 h in vitro. Strain EcN-IL with 500 mg/kg of SDZ was employed as a food supplement to feed chicken broilers, which can reduce the residue of SDZ in broiler manure by 58 ± 2% and also reduced dysbiosis of the gut microbiota due to overuse of antibiotics. The genetically engineered EcN-IL has laid a foundation for degrading SDZ in broilers and their manure.


Assuntos
Microbioma Gastrointestinal , Sulfadiazina , Animais , Antibacterianos , Bioengenharia , Galinhas , Ecossistema , Microbioma Gastrointestinal/genética , Humanos , Lacase/genética , Esterco , Microbiologia do Solo
19.
J Biomed Mater Res B Appl Biomater ; 109(5): 744-764, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33075186

RESUMO

Preceramic organosilicon materials combining the properties of a polymer and an inorganic ceramic phase are of great interest to scientists working in biomedical sciences. The interdisciplinary nature of organosilicon polymers and their molecular structures, as well as their diversity of applications have resulted in an unprecedented range of devices and synergies cutting across unrelated fields in medicine and engineering. Organosilicon materials, especially the polysiloxanes, have a long history of industrial and medical uses in many versatile aspects as they can be easily fabricated into complex-shaped products using a wide variety of computer-aided or polymer manufacturing techniques. Thus far, intensive research activities have been mainly devoted to the processing of preceramic organosilicon polymers toward magnetic, electronic, structural, optical, and not biological applications. Herein we present innovative research studies and recent developments of preceramic organosilicon polymers at the interface with biological systems, displaying the versatility and multi-functionality of these materials. This article reviews recent research on preceramic organosilicon polymers and corresponding composites for bone tissue regeneration and medical engineering implants, focusing on three particular topics: (a) surface modifications to create tailorable and bioactive surfaces with high corrosion resistance and improved biological properties; (b) biological evaluations for specific applications, such as in glaucoma drainage devices, orthopedic implants, bone tissue regeneration, wound dressing, drug delivery systems, and antibacterial activity; and (c) in vitro and in vivo studies for cytotoxicity, genotoxicity, and cell viability. The interest in organosilicon materials stems from the fact that a vast array of these materials have complementary attributes that, when integrated appropriately with functional fillers and carefully controlled conditions, could be exploited either as polymeric Si-based composites or as organosilicon polymer-derived Si-based ceramic composites to tailor and optimize properties of the Si-based materials for various proposed applications.


Assuntos
Engenharia Biomédica/métodos , Cerâmica/química , Polímeros/química , Silício/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Bioengenharia , Regeneração Óssea , Osso e Ossos , Sobrevivência Celular , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Teste de Materiais , Microscopia Confocal , Compostos Orgânicos/química , Pressão , Ratos , Silicones/química , Sais de Tetrazólio/química , Tiazóis/química , Cicatrização
20.
Theranostics ; 10(16): 7034-7052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32641977

RESUMO

This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Vacinas Virais/isolamento & purificação , Vacinas Virais/farmacologia , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/imunologia , Bioengenharia/métodos , Bioengenharia/tendências , Reatores Biológicos , COVID-19 , Vacinas contra COVID-19 , Técnicas de Cultura de Células , Simulação por Computador , Infecções por Coronavirus/imunologia , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Avaliação de Medicamentos/métodos , Avaliação de Medicamentos/tendências , Farmacorresistência Viral , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Modelos Biológicos , Organoides/citologia , Organoides/virologia , Pneumonia Viral/imunologia , SARS-CoV-2 , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA