RESUMO
The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the bloodâbrain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.
Assuntos
Biomimética , Barreira Hematoencefálica , Dióxido de Silício , Animais , Dióxido de Silício/química , Camundongos , Biomimética/métodos , Barreira Hematoencefálica/metabolismo , Compostos de Manganês/química , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos/métodos , Óxidos/química , Curcumina/uso terapêutico , Curcumina/farmacologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Inflamação , Macrófagos , Encéfalo/metabolismo , Nanopartículas/químicaRESUMO
Glioma, the most common primary brain tumor, is highly invasive and grows rapidly. As such, the survival of glioma patients is relatively short, highlighting the vital importance of timely diagnosis and treatment of glioma. However, the blood brain barrier (BBB) and the non-targeting delivery systems of contrast agents and drugs greatly hinder the effective glioma imaging and therapy. Fortunately, in recent years, investigators have constructed various biomimetic delivery platforms utilizing the exceptional advantages of biomimetic nanocomposites, such as immune evasion, homologous targeting ability, and BBB penetrating ability, to achieve efficient and precise delivery of substances to glioma sites for improved diagnosis and treatment. In this concept, we present the application of these biomimetic nanocomposites in fluorescence imaging (FI), magnetic resonance imaging (MRI), and multi-modal imaging, as well as in chemotherapy, phototherapy, and combined therapy for glioma. Lastly, we provide our perspective on this research field.
Assuntos
Materiais Biomiméticos , Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Nanocompostos , Glioma/diagnóstico por imagem , Glioma/terapia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Materiais Biomiméticos/química , Barreira Hematoencefálica/metabolismo , Meios de Contraste/química , Imagem Óptica , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos , Fototerapia , Biomimética/métodosRESUMO
Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and ß1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.
Assuntos
Dendrímeros , Glioma , Humanos , Fósforo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Biomimética , Glioma/terapia , Glioma/patologia , Imunoterapia , Células Matadoras Naturais , Anticorpos/metabolismo , Linfócitos T Citotóxicos , Barreira Hematoencefálica/metabolismo , Microambiente TumoralRESUMO
Purpose: The lack of specificity of conventional chemotherapy is one of the main difficulties to be solved in cancer therapy. Biomimetic magnetoliposomes are successful chemotherapy controlled-release systems, hyperthermia, and active targeting agents by functionalization of their surface with monoclonal antibodies. The membrane receptor Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) stands out as colorectal cancer (CRC) biomarker and appears to be related to treatment resistance and the development of metastasis. The aim of this study was to assess the effectiveness and safety of LGR5-targeted biomimetic magnetoliposomes loaded with oxaliplatin (OXA) or 5-fluorouracil (5-FU) in the selective treatment of CRC and their possible application in hyperthermia. Methods: Synthesis, characterization and determination of heating capacity of magnetoliposomes transporting OXA or 5-FU (with and without LGR5 functionalization) were conducted. In vitro antitumoral activity was assayed in multiple colorectal cell lines at different times of exposition. In addition to this, cell internalization was studied by Prussian Blue staining, flow cytometry and fluorescence microscopy. In vivo acute toxicity of magnetoliposomes was performed to evaluate iron-related toxicity. Results: OXA and 5-FU loaded magnetoliposomes functionalized with LGR5 antibody showed higher cellular uptake than non-targeted nanoformulation with a reduction of the percentage of proliferation in colon cancer cell lines up to 3.2-fold of the IC50 value compared to that of free drug. The differences between non-targeted and targeted nanoformulations were more evident after short exposure times (4 and 8 hours). Interestingly, assays in the MC38 transduced cells with reduced LGR5 expression (MC38-L(-)), showed lower cell internalization of LGR5-targeted magnetoliposomes compared to non-transduced MC38 cell line. In addition, magnetoliposomes showed an in vitro favorable heating response under magnetic excitation and great iron-related biocompatibility data in vivo. Conclusion: Drug-loaded magnetoliposomes functionalized with anti-LGR5 antibodies could be a promising CRC treatment strategy for LGR5+ targeted chemotherapy, magnetic hyperthermia, and both in combination.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Hipertermia Induzida , Humanos , Biomimética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fluoruracila/uso terapêutico , Oxaliplatina/uso terapêutico , Ferro , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologiaRESUMO
BACKGROUND: Several methods were introduced for enamel biomimetic remineralization that utilize a biomimetic analogue to interact and absorb bioavailable calcium and phosphate ions and induce crystal nucleation on demineralized enamel. Amelogenin is the most predominant enamel matrix protein that is involved in enamel biomineralization. It plays a major role in developing the enamel's hierarchical microstructure. Therefore, this study was conducted to evaluate the ability of an amelogenin-inspired peptide to promote the remineralization potential of fluoride and a supersaturated calcium phosphate solution in treating artificially induced enamel carious lesions under pH-cycling regimen. METHODS: Fifty enamel slices were prepared with a window (4*4 mm2 ) on the surface. Five samples were set as control healthy enamel and 45 samples were subjected to demineralization for 3 days. Another 5 samples were set as control demineralized enamel and 40 enamel samples were assigned into 8 experimental groups (n=5) (P/I, P/II, P/III, P/AS, NP/I, NP/II, NP/III and NP/AS) according to peptide treatment (peptide P or non-peptide NP) and remineralizing solution used (I; calcium phosphate solution, II; calcium phosphate fluoride solution, III; fluoride solution and AS; artificial saliva). Samples were then subjected to demineralization/remineralization cycles for 9 days. Samples in all experimental groups were evaluated using Raman spectroscopy for mineral content recovery percentage, microhardness and nanoindentation as healthy, demineralized enamel and after pH-cycling. Data were statistically analysed using two-way repeated measures Anova followed by Bonferroni-corrected post hoc test for pairwise multiple comparisons between groups. Statistical significance was set at p= 0.05. Additionally, XRD, FESEM and EDXS were used for crystal orientation, surface morphology and elemental analysis after pH-cycling. RESULTS: Nanocrystals clumped in a directional manner were detected in peptide-treated groups. P/II showed the highest significant mean values in mineral content recovery (63.31%), microhardness (268.81±6.52 VHN), elastic modulus (88.74±2.71 GPa), nanohardness (3.08±0.59 GPa) and the best crystal orientation with I002/I300 (1.87±0.08). CONCLUSION: Despite pH changes, the tested peptide was capable of remineralizing enamel with ordered crystals. Moreover, the supplementary use of calcium phosphate fluoride solution with peptide granted an enhancement in enamel mechanical properties after remineralization.
Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos/farmacologia , Amelogenina/farmacologia , Amelogenina/uso terapêutico , Cariostáticos/farmacologia , Cariostáticos/uso terapêutico , Biomimética , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/uso terapêutico , Minerais , Fosfatos , Remineralização Dentária/métodos , Concentração de Íons de HidrogênioRESUMO
Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.
Assuntos
Grafite , Staphylococcus aureus Resistente à Meticilina , Urânio , Purificação da Água , Zircônio , Urânio/análise , Flúor , Escherichia coli , Fluoretos , Biomimética , Purificação da Água/métodos , Adsorção , AntibacterianosRESUMO
Fluorescent bioimaging and photothermal therapy (PTT) techniques have potential significance in cancer diagnosis and treatment and have been widely applied in biomedical and practical clinical trials. This study proposes the molecular design and biofabrication of a two-dimensional (2D) nanoplatform, exhibiting promising prospects for synergistic bioimaging and PTT of tumors. First, biocompatible 2D peptide nanosheets (PNSs) were designed and prepared through peptide self-assembly. These served as a support matrix for assembling polyethylene glycol-modified Ag2S quantum dots (PEG-Ag2SQDs) to form a 2D nanoplatform (PNS/PEG-Ag2SQDs) with unique fluorescent and photothermal properties. The designed 2D nanoplatform not only showed improved photothermal efficacy and an elevated photothermal conversion efficiency of 52.46 %, but also demonstrated significant lethality against tumors in both in vitro and in vivo cases. Additionally, it displays excellent imaging effects in the near-infrared II region, making it suitable for synergistic fluorescent imaging-guided PTT of tumors. This study not only provides a facile approach for devising and synthesizing 2D peptide assemblies but also presents new biomimetic strategies to create functional 2D organic/inorganic nanoplatforms for biomedical applications.
Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Humanos , Fototerapia/métodos , Terapia Fototérmica , Nanopartículas/química , Biomimética , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Peptídeos , Linhagem Celular TumoralRESUMO
The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.
Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Periósteo , Biomimética , Óleo de Fígado de Bacalhau , Poliésteres/química , Engenharia Tecidual/métodosRESUMO
The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.
Assuntos
Anti-Infecciosos , Curcumina , Infecção dos Ferimentos , Animais , Suínos , Hidrogéis/farmacologia , Cicatrização , Biomimética , Bandagens , Antibacterianos/uso terapêutico , Materiais Biocompatíveis , Imunoterapia , Infecção dos Ferimentos/tratamento farmacológicoRESUMO
The purpose of this paper is to develop a cancer cell membrane biomimetic nanodrug delivery system (NDDS) to achieve an enhanced chemo-photothermal synergistic antitumor effect. The biomimetic NDDSs are composed of mitoxantrone (MIT)-loaded gelatin nanoparticles and IR820-encapsulated 4T1 cancer cell membrane-derived vesicles. The biomimetic NDDS displayed excellent stability and photothermal conversion efficiency. Compared to naked nanoparticles, the cell membrane-coated nanoparticles improved 4T1 cell uptake through homologous targeting and effectively reduced internalization of macrophages. In vivo photothermal imaging results further showed that the NDDS could be enriched at the tumor site for 48 h and could raise the temperature of the tumor area to 60 °C within 5 min under 808 nm laser irradiation. Finally, NDDS successfully inhibited primary tumor growth (over 89% inhibition) and significantly inhibited lung metastasis. This study may provide a new strategy for personalized chemotherapy-photothermal combination therapy of metastatic breast cancer using tumor cell membranes from cancer patients as drug carriers.
Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Mitoxantrona/uso terapêutico , Gelatina , Terapia Fototérmica , Biomimética , Fototerapia/métodos , Membrana CelularRESUMO
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanocompostos , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Ouro , Biomimética , Fototerapia , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêuticoRESUMO
Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.
Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Doxorrubicina , Biomimética , Fototerapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , EritrócitosRESUMO
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Medicina de Precisão , Biomimética , Hipertermia Induzida/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Membrana Celular , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica/métodosRESUMO
Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (â¼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.
Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Fototerapia/métodos , Biomimética , Ouro , Reprodutibilidade dos Testes , Linhagem Celular Tumoral , Neoplasias/terapia , Nanomedicina Teranóstica/métodosRESUMO
Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.
Assuntos
Antioxidantes , Ácido Clorogênico , Antioxidantes/química , Biomimética , Polissacarídeos/química , Fibras na Dieta/metabolismo , Celulose , Pectinas/metabolismoRESUMO
Targeting nutrient metabolism has been proposed as an effective therapeutic strategy to combat breast cancer because of its high nutrient requirements. However, metabolic plasticity enables breast cancer cells to survive under unfavorable starvation conditions. The key mammalian target regulators rapamycin (mTOR) and hypoxia-inducible-factor-1 (HIF-1) tightly link the dynamic metabolism of glutamine and glucose to maintain nutrient flux. Blocking nutrient flow also induces autophagy to recycle nutrients in the autophagosome, which exacerbates metastasis and tumor progression. Compared to other common cancers, breast cancer is even more dependent on mTOR and HIF-1 to orchestrate the metabolic network. Therefore, we develop a cascade-boosting integrated nanomedicine to reprogram complementary metabolism coupled with regulators in breast cancer. Glucose oxidase efficiently consumes glucose, while the delivery of rapamycin inside limits the metabolic flux of glutamine and uncouples the feedback regulation of mTOR and HIF-1. The hydroxyl radical generated in a cascade blocks the later phase of autophagy without nutrient recycling. This nanomedicine targeting orchestrated metabolism can disrupt the coordination of glucose, amino acids, nucleotides, lipids, and other metabolic pathways in breast cancer tissues, effectively improving the durable antitumor effect and prognosis of breast cancer. Overall, the cascade-boosting integrated system provides a viable strategy to address cellular plasticity and efficient enzyme delivery.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Glutamina/metabolismo , Biomimética , Nanomedicina , Serina-Treonina Quinases TOR/metabolismo , Sirolimo , Glucose/metabolismoRESUMO
Purpose: We constructed biomimetic nanoparticles with biocompatible, tumor-targeting, laser-responsive properties for ferroptosis-induced colorectal cancer chemo-photothermal therapy, with the aim to realize double-hit ferroptosis treatment for colorectal cancer. Methods: The nanoparticles were prepared by first loading the chemotherapy drug bufotalin (CS-5) with Prussian blue (PB), then combining a hybridized erythrocyte-tumor membrane (M) with PB@CS-5 to produce PB@CS-5@M. The chemo-photothermal therapy efficiency of PB@CS-5@M was tested by in vitro and in vivo experiments. Results and conclusion: The combined PB and CS-5 act as promising ferroptosis inducers to enhance ferroptosis efficacy. The hyperthermia induced by laser stimulation can trigger PB to release CS-5 and iron and ferrous ions, which further promotes ferroptosis.
Assuntos
Bufanolídeos , Neoplasias Colorretais , Ferrocianetos , Ferroptose , Hipertermia Induzida , Nanopartículas , Humanos , Terapia Fototérmica , Biomimética , Fototerapia/métodos , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Doxorrubicina/farmacologia , Linhagem Celular TumoralRESUMO
Nanotechnology-based strategy has recently drawn extensive attention for the therapy of malignant tumors due to its distinct strengths in cancer diagnosis and treatment. However, the limited intratumoral permeability of nanoparticles is a major hurdle to achieving the desired effect of cancer treatment. Due to their superior cargo towing and reliable penetrating property, micro-/nanomotors (MNMs) are considered as one of the most potential candidates for the coming generation of drug delivery platforms. Here, near-infrared (NIR)-actuated biomimetic nanomotors (4T1-JPGSs-IND) are fabricated successfully and we demonstrate that 4T1-JPGSs-IND selectively accumulate in homologous tumor regions due to the effective homing ability. Upon laser irradiation, hyperthermia generated by 4T1-JPGSs-IND leads to self-thermophoretic motion and photothermal therapy (PTT) to ablate tumors with a deep depth, thereby improving the photothermal therapeutic effect for cancer management. The developed nanomotor system with multifunctionalities exhibits promising potential in biomedical applications to fight against various diseases.
Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia , Biomimética , Neoplasias/terapia , Linhagem Celular TumoralRESUMO
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Biomimética , Fototerapia , Membrana Celular , Neoplasias/patologia , Nanopartículas/uso terapêuticoRESUMO
Aberrant ß-amyloid (Aß) fibrillation is the key event in Alzheimer's disease (AD), the inhibition and degradation of which are recognized as a promising therapeutic strategy to alleviate the nerve damage of AD. Photodynamic therapy (PDT) holds great potential for modulation of Aß self-assembly, which is nevertheless limited by the inefficient utilization of reactive oxygen species (ROS). Herein, an erythrocyte membrane (EM)-modified core-shell upconversion nanoparticle (UCNP/Cur@EM) is designed and fabricated as a biomimetic nanobait to improve the PDT efficiency in AD. The UCNP with the outlayer of mesoporous silica is synthesized to load a high amount of the photosensitizer (curcumin), the unique optical feature of which can trigger curcumin to generate ROS upon near-infrared light (NIR) irradiation. Integration of EM enables the biomimetic nanobait to attract Aß peptides trapped in the phospholipid bilayer, restraining the growth of Aß monomers to form aggregates and improving the utilization rate of ROS to degrade the preformed Aß aggregates. In vivo studies demonstrate that UCNP/Cur@EM irradiated by NIR enables to decrease Aß deposits, ameliorates memory deficits, and rescues cognitive functions in the APP/PS1 transgenic mouse model. A biocompatible and controllable way is provided here to inhibit the amyloid protein-associated pathological process of AD.