Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Mol Genet Metab ; 141(1): 108114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142628

RESUMO

Phenylketonuria is characterized by intellectual disability and behavioral, psychiatric, and movement disorders resulting from phenylalanine (Phe) accumulation. Standard-of-care treatment involves a Phe-restricted diet plus medical nutrition therapy (MNT), with or without sapropterin dihydrochloride, to reduce blood Phe levels. Pegvaliase is an injectable enzyme substitution treatment approved for adult patients with blood Phe >600 µmol/L despite ongoing management. A previous comparative effectiveness analysis using data from the Phase 3 PRISM trials of pegvaliase (NCT01819727 and NCT01889862) and the Phenylketonuria Demographics, Outcomes and Safety Registry (PKUDOS; NCT00778206) suggested that pegvaliase was more effective at lowering mean blood Phe levels than sapropterin + MNT or MNT alone at 1 and 2 years of treatment. The current work augments and complements the previous analysis by including additional follow-up from the completed studies, robust methods reflecting careful consideration of issues with the distribution of Phe, and alternative methods for adjustment that are important for control of potential confounding in comparative effectiveness. Median blood Phe levels were lower, and median intact protein intakes were higher, in the pegvaliase group (n = 183) than in the sapropterin + MNT (n = 82) and MNT (n = 67) groups at Years 1, 2, and 3. In the pegvaliase group, median blood Phe levels decreased from baseline (1244 µmol/L) to Year 1 (535 µmol/L), Year 2 (142 µmol/L), and Year 3 (167 µmol/L). In the sapropterin + MNT group, median blood Phe levels decreased from baseline (900 µmol/L) to Year 1 (588 µmol/L) and Year 2 (592 µmol/L), and increased at Year 3 (660 µmol/L). In the MNT group, median blood Phe levels decreased slightly from baseline (984 µmol/L) to Year 1 (939 µmol/L) and Year 2 (941 µmol/L), and exceeded baseline levels at Year 3 (1157 µmol/L). The model-estimated proportions of participants achieving blood Phe ≤600 µmol/L were 41%, 100%, and 100% in the pegvaliase group at Years 1, 2, and 3, respectively, compared with 55%, 58%, and 38% in the sapropterin + MNT group and 5%, 16%, and 0% in the MNT group. The estimated proportions of participants achieving more stringent blood Phe targets of ≤360 µmol/L and ≤120 µmol/L were also higher in the pegvaliase group than in the other groups at Years 2 and 3. Overall, our results indicate that, compared with standard therapy, pegvaliase induces a substantial, progressive, and sustained decrease in blood Phe levels - to a much greater extent than sapropterin + MNT or MNT alone - which is expected to improve long-term outcomes in patients with phenylketonuria.


Assuntos
Biopterinas/análogos & derivados , Terapia Nutricional , Fenilcetonúrias , Adulto , Humanos , Fenilcetonúrias/terapia , Fenilalanina Amônia-Liase , Fenilalanina , Proteínas Recombinantes
2.
Sci Rep ; 13(1): 21292, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042898

RESUMO

Dysregulation of nitric oxide (NO) production can cause ischaemic retinal injury and result in blindness. How this dysregulation occurs is poorly understood but thought to be due to an impairment in NO synthase function (NOS) and nitro-oxidative stress. Here we investigated the possibility of correcting this defective NOS activity by supplementation with the cofactor tetrahydrobiopterin, BH4. Retinal ischaemia was examined using the oxygen-induced retinopathy model and BH4 deficient Hph-1 mice used to establish the relationship between NOS activity and BH4. Mice were treated with the stable BH4 precursor sepiapterin at the onset of hypoxia and their retinas assessed 48 h later. HPLC analysis confirmed elevated BH4 levels in all sepiapterin supplemented groups and increased NOS activity. Sepiapterin treatment caused a significant decrease in neuronal cell death in the inner nuclear layer that was most notable in WT animals and was associated with significantly diminished superoxide and local peroxynitrite formation. Interestingly, sepiapterin also increased inflammatory cytokine levels but not microglia cell number. BH4 supplementation by sepiapterin improved both redox state and neuronal survival during retinal ischaemia, in spite of a paradoxical increase in inflammatory cytokines. This implicates nitro-oxidative stress in retinal neurones as the cytotoxic element in ischaemia, rather than enhanced pro-inflammatory signalling.


Assuntos
Biopterinas , Doenças Retinianas , Camundongos , Animais , Biopterinas/metabolismo , Doenças Retinianas/tratamento farmacológico , Óxido Nítrico/metabolismo , Morte Celular , Suplementos Nutricionais , Isquemia/tratamento farmacológico
3.
J Pharmacol Sci ; 150(3): 173-179, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184122

RESUMO

Quinonoid dihydropteridine reductase (QDPR) regenerates tetrahydrobiopterin (BH4), which is an essential cofactor for catecholamine and serotonin (5-hydroxytryptamine, 5-HT) biosynthesis. Serotonin is known as an important platelet agonist, but its role under BH4-synthesizing or recycling enzymes deficiency is unknown. In the present study, we evaluated the effect of Qdpr gene disruption on platelet aggregation using knockout (Qdpr-/-) mice. Platelet aggregation was monitored by light transmission aggregometry using adenosine diphosphate (ADP) and collagen as agonists. We also assessed how platelet aggregation was modified by 5-HT recovery through supplementation with 5-hydroxytryptophan (5-HTP), a 5-HT precursor, or by blocking the serotonin 5-HT2A receptor. Platelet aggregation in the Qdpr-/- mice was significantly suppressed in comparison with that in wild-type (Qdpr+/+) mice, particularly at the maintenance phase of aggregation. 5-HT storage was decreased in Qdpr-/- platelets, and 5-HTP supplementation recovered not only the intraplatelet 5-HT levels but also platelet aggregation. In addition, 5-HT signal blockade using sarpogrelate suppressed platelet aggregation in Qdpr+/+ mice, and platelets in Qdpr-/- mice were hardly affected. Our results indicate that QDPR deficiency suppresses platelet aggregation by impairing 5-HT biosynthesis in mice.


Assuntos
Di-Hidropteridina Redutase , Agregação Plaquetária , 5-Hidroxitriptofano/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Biopterinas/análogos & derivados , Catecolaminas , Colágeno , Di-Hidropteridina Redutase/genética , Di-Hidropteridina Redutase/farmacologia , Camundongos , Receptor 5-HT2A de Serotonina , Serotonina/farmacologia
4.
Am J Physiol Heart Circ Physiol ; 323(5): H975-H982, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149770

RESUMO

Endothelial function (brachial artery flow-mediated dilation [FMD]) is reduced in estrogen-deficient postmenopausal women, mediated, in part, by reduced nitric oxide (NO) bioavailability, secondary to tetrahydrobiopterin (BH4) deficiency and oxidative stress. FMD is increased, but not fully restored, in postmenopausal women after acute intravenous vitamin C (VITC; superoxide scavenger) or oral BH4 supplementation. In vitro studies demonstrate that coadministration of VITC with BH4 prevents endothelial nitric oxide synthase (eNOS) uncoupling and reductions in NO by peroxynitrite. To investigate mechanisms of endothelial dysfunction in women, we assessed the separate and combined effects of VITC and BH4 to determine whether coadministration of VITC + BH4 improves FMD in healthy postmenopausal women (n = 19, 58 ± 5 yr) to premenopausal (n = 14, 36 ± 9 yr) levels, with exploratory testing in perimenopausal women (n = 8, 51 ± 3 yr). FMD was measured during acute intravenous infusions of saline (control) and VITC (∼2-3 g) ∼3 h after a single dose of oral BH4 (KUVAN, 10 mg/kg body wt) or placebo (randomized crossover, separated by ∼1 mo). Under the placebo condition, FMD was reduced in postmenopausal compared with premenopausal women during the saline infusion (5.6 ± 0.7 vs. 11.6 ± 0.9%, P < 0.001) and increased in postmenopausal women during VITC (+3.5 [1.4, 5.6]%, P = 0.001) and acute BH4 (+1.8 [0.37, 3.2]%, P = 0.01) alone. Coadministration of VITC + BH4 increased FMD in postmenopausal women (+3.0 [1.7, 4.3]%, P < 0.001), but FMD remained reduced compared with premenopausal women (P = 0.02). Exploratory analyses revealed that VITC + BH4 did not restore FMD in perimenopausal women to premenopausal levels (P = 0.045). Coadministration of VITC + BH4 does not restore FMD in menopausal women, suggesting that additional mechanisms may be involved.NEW & NOTEWORTHY Endothelial function is reduced across the menopausal stages related to increased oxidative stress associated with estrogen deficiency. In vitro studies demonstrate that coadministration of VITC with BH4 prevents endothelial nitric oxide synthase (eNOS) uncoupling and reductions in NO by peroxynitrite; however, this remains untested in humans. We demonstrate that the coadministration of BH4 + VITC does not restore endothelial function in perimenopausal and postmenopausal women to the level of premenopausal women, suggesting that other mechanisms contribute.


Assuntos
Óxido Nítrico Sintase Tipo III , Doenças Vasculares , Humanos , Feminino , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Biopterinas/metabolismo , Biopterinas/farmacologia , Menopausa , Estrogênios/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo
5.
Turk J Pediatr ; 64(3): 413-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899555

RESUMO

BACKGROUND: Phenylketonuria (PKU), is an autosomal recessive disease leading to the conversion defect of phenylalanine (Phe) into tyrosine. Severe neurocognitive and behavioral outcomes are observed in untreated cases. The present paper aims to review clinical experiences and expert recommendations in diagnosis, treatment, and follow-up of pediatric PKU patients in Turkey. METHODS: Two advisory board meetings were held in the year 2016 and 2017 with contributions of four leading experts in this field, and an online update meeting was held for final decisions about statements, and conclusions in January 2021. Considering management gaps in diagnosis, treatment, and follow-up of PKU, discussion points are defined. The Committee members then reviewed the Turkish and general literature and the final statements were formulated. RESULTS: The diagnostic cut-off for dried blood spots should remain at 2 mg/dl. Treatment cut-off value is acceptable at 6 mg/dl. Compliance with an ideal follow-up list is strongly recommended. Total protein intake should not be limited. Age-related safe levels of protein intake should be encouraged with an additional 40% from L-amino acids supplements, a 20% compensatory factor to account for the digestibility and utilization of amino acids from the supplement, and a further 20% compensation to optimize Phe control. Cognitive impairment and intelligence quotient evaluations should be performed at least twice before 3 years of age. In pregnant women, the target Phe level should be < 5 mg/dl, and they should be followed-up weekly in the first trimester, then every 2 weeks after organogenesis. Novel pharmacological treatments are promising, but some of them have limitations for our country. CONCLUSIONS: Early diagnosis and treatment initiation; determination and standardization of diagnostic and treatment thresholds; treatment modalities and follow-up parameters are significant steps in treating PKU in the long term. PKU follow-up is a dynamic process with uncertainties and differences in clinical practice.


Assuntos
Biopterinas , Fenilcetonúrias , Aminoácidos/uso terapêutico , Biopterinas/uso terapêutico , Criança , Feminino , Humanos , Fenilalanina , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/terapia , Gravidez , Turquia/epidemiologia
6.
J Appl Physiol (1985) ; 132(3): 773-784, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112931

RESUMO

As a deficiency in tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase, has been implicated in the age-related decline in vascular function, this study aimed to determine the impact of acute BH4 supplementation on flow-mediated vasodilation (FMD) in old adults. Two approaches were used: 1) A multiday, double-blind, placebo-controlled, crossover design measuring, FMD [ΔFMD (mm), %FMD (%)] and shear rate area under the curve (SR AUC) in nine old subjects (73 ± 8 yr) with either placebo (placebo) or BH4 (≈10 mg/kg, post), and 2) a single experimental day measuring FMD in an additional 13 old subjects (74 ± 7 yr) prior to (pre) and 4.5 h after ingesting BH4 (≈10 mg/kg). With the first experimental approach, acute BH4 intake did not significantly alter FMD (ΔFMD: 0.17 ± 0.03 vs. 0.13 ± 0.02 mm; %FMD: 3.3 ± 0.61 vs. 2.9 ± 0.4%) or SR AUC (30,280 ± 4,428 vs. 37,877 ± 9,241 s-1) compared with placebo. Similarly, with the second approach, BH4 did not significantly alter FMD (ΔFMD: 0.09 ± 0.02 vs. 0.12 ± 0.03 mm; %FMD: 2.2 ± 0.6 vs. 2.9 ± 0.6%) or SR AUC (37,588 ± 6,753 vs. 28,996 ± 3,735 s-1) compared with pre. Moreover, when the two data sets were combined, resulting in a greater sample size, there was still no evidence of an effect of BH4 on vascular function in these old subjects. Importantly, both plasma BH4 and 7,8-dihydrobiopterin (BH2), the oxidized form of BH4, increased significantly with acute BH4 supplementation. Consequently, the ratio of BH4/BH2, recognized to impact vascular function, was unchanged. Thus, acute BH4 supplementation does not correct vascular dysfunction in the old.NEW & NOTEWORTHY Despite two different experimental approaches, acute BH4 supplementation did not affect vascular function in older adults, as measured by flow-mediated vasodilation. Plasma levels of both BH4 and BH2, the BH4 oxidized form, significantly increased after acute BH4 supplementation, resulting in an unchanged ratio of BH4/BH2, a key determining factor for endothelial nitric oxide synthase coupling. Therefore, likely due to the elevated oxidative stress with advancing age, acute BH4 supplementation does not correct vascular dysfunction in the old.


Assuntos
Endotélio Vascular , Óxido Nítrico Sintase Tipo III , Idoso , Biopterinas/análogos & derivados , Suplementos Nutricionais , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo
7.
Eur Heart J ; 43(17): 1652-1664, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35139535

RESUMO

AIMS: Tetrahydrobiopterin (BH4) is a critical determinant of the biological function of endothelial nitric oxide synthase. The present study was to investigate the role of valvular endothelial cell (VEC)-derived BH4 in aortic valve calcification. METHODS AND RESULTS: Plasma and aortic valve BH4 concentrations and the BH4:BH2 ratio were significantly lower in calcific aortic valve disease patients than in controls. There was a significant decrease of the two key enzymes of BH4 biosynthesis, guanosine 5'-triphosphate cyclohydrolase I (GCH1) and dihydrofolate reductase (DHFR), in calcified aortic valves compared with the normal ones. Endothelial cell-specific deficiency of Gch1 in Apoe-/- (Apoe-/-Gch1fl/flTie2Cre) mice showed a marked increase in transvalvular peak jet velocity, calcium deposition, runt-related transcription factor 2 (Runx2), dihydroethidium (DHE), and 3-nitrotyrosine (3-NT) levels in aortic valve leaflets compared with Apoe-/-Gch1fl/fl mice after a 24-week western diet (WD) challenge. Oxidized LDL (ox-LDL) induced osteoblastic differentiation of valvular interstitial cells (VICs) co-cultured with either si-GCH1- or si-DHFR-transfected VECs, while the effects could be abolished by BH4 supplementation. Deficiency of BH4 in VECs caused peroxynitrite formation increase and 3-NT protein increase under ox-LDL stimulation in VICs. SIN-1, the peroxynitrite generator, significantly up-regulated alkaline phosphatase (ALP) and Runx2 expression in VICs via tyrosine nitration of dynamin-related protein 1 (DRP1) at Y628. Finally, folic acid (FA) significantly attenuated aortic valve calcification in WD-fed Apoe-/- mice through increasing DHFR and salvaging BH4 biosynthesis. CONCLUSION: The reduction in endothelial-dependent BH4 levels promoted peroxynitrite formation, which subsequently resulted in DRP1 tyrosine nitration and osteoblastic differentiation of VICs, thereby leading to aortic valve calcification. Supplementation of FA in diet attenuated hypercholesterolaemia-induced aortic valve calcification by salvaging BH4 bioavailability.


Assuntos
Estenose da Valva Aórtica , Calcinose , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/prevenção & controle , Apolipoproteínas E/metabolismo , Biopterinas/análogos & derivados , Calcinose/metabolismo , Calcinose/prevenção & controle , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/metabolismo , GTP Cicloidrolase/metabolismo , Humanos , Camundongos , Ácido Peroxinitroso/metabolismo , Tirosina/metabolismo
8.
Metab Brain Dis ; 37(3): 743-760, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997870

RESUMO

BACKGROUND: Disorders of tetrahydrobiopterin metabolism represent a rare group of inherited neurotransmitter disorders that manifests mainly in infancy or childhood with developmental delay, neuroregression, epilepsy, movement disorders, and autonomic symptoms. METHODOLOGY: A retrospective review of genetically confirmed cases of disorders of tetrahydrobiopterin metabolism over a period of three years (Jan 2018 to Jan 2021) was performed across two paediatric neurology centres from South India. RESULTS: A total of nine patients(M:F=4:5) fulfilled the eligibility criteria. The genetic variants detected include homozygous mutations in the QDPR(n=6), GCH1(n=2), and PTS(n=1) genes. The median age at onset of symptoms was 6-months(range 3-78 months), while that at diagnosis was 15-months (8-120 months), resulting in a median delay in diagnosis of 9-months. The main clinical manifestations included neuroregression (89%), developmental delay(78%), dystonia(78%) and seizures(55%). Management strategies included a phenylalanine restricted diet, levodopa/carbidopa, 5-Hydroxytryphtophan, and folinic acid. Only, Patient-2 afforded and received BH4 supplementation at a sub-optimal dose later in the disease course. We had a median duration of follow up of 15 months (range 2-48 months). Though the biochemical response has been marked; except for patients with GTPCH deficiency, only mild clinical improvement was noted with regards to developmental milestones, seizures, or dystonia in others. CONCLUSION: Tetrahydrobiopterin deficiencies represent a rare yet potentially treatable cause for non-phenylketonuria hyperphenylalaninemia with better outcomes when treated early in life. Screening for disorders of biopterin metabolism in patients with hyperphenylalaninemia prevents delayed diagnosis. This study expands the genotype-phenotype spectrum of patients with disorders of tetrahydrobiopterin metabolism from South India.


Assuntos
Distonia , Fenilcetonúrias , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Biopterinas/uso terapêutico , Criança , Pré-Escolar , Distonia/genética , Feminino , Humanos , Lactente , Masculino , Fenilalanina , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/genética
9.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807079

RESUMO

The traditional treatment for phenylketonuria (PKU) is a phenylalanine (Phe)-restricted diet, supplemented with a Phe-free/low-Phe protein substitute. Pharmaceutical treatment with synthetic tetrahydrobiopterin (BH4), an enzyme cofactor, allows a patient subgroup to relax their diet. However, dietary protocols guiding the adjustments of protein equivalent intake from protein substitute with BH4 treatment are lacking. We systematically reviewed protein substitute usage with long-term BH4 therapy. Electronic databases were searched for articles published between January 2000 and March 2020. Eighteen studies (306 PKU patients) were eligible. Meta-analyses demonstrated a significant increase in Phe and natural protein intakes and a significant decrease in protein equivalent intake from protein substitute with cofactor therapy. Protein substitute could be discontinued in 51% of responsive patients, but was still required in 49%, despite improvement in Phe tolerance. Normal growth was maintained, but micronutrient deficiency was observed with BH4 treatment. A systematic protocol to increase natural protein intake while reducing protein substitute dose should be followed to ensure protein and micronutrient requirements are met and sustained. We propose recommendations to guide healthcare professionals when adjusting dietary prescriptions of PKU patients on BH4. Studies investigating new therapeutic options in PKU should systematically collect data on protein substitute and natural protein intakes, as well as other nutritional factors.


Assuntos
Biopterinas/análogos & derivados , Biopterinas/uso terapêutico , Fenilcetonúrias/dietoterapia , Animais , Bases de Dados Factuais , Ingestão de Alimentos , Humanos , Micronutrientes , Proteínas/administração & dosagem
10.
J Ethnopharmacol ; 271: 113885, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539952

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scientific evidence supports the antioxidant, anti-inflammatory and anti-lipidemic properties of Euterpe oleracea Mart. (açaí), which all converge to reduce cardiovascular risks. Macerating the pulp of açaí fruit produces a viscous aqueous extract (AE) rich in flavonoids that is commonly used in food production. In addition to nutritional aspects, cardiovascular benefits are attributed to AE by traditional medicine. AIM OF THE STUDY: Evaluation of AE impact on blood flow in vivo in rats and investigation of the mechanism underlying this response in vitro in rat endothelial cells (RECs). MATERIALS AND METHODS: For the measurement of acute blood flow, a perivascular ultrasound probe was used in Wistar rats. The in vitro assays employed REC to evaluate: concentration (1-1000 µg/mL) and time response (2-180 min) of AE in MTT cell viability assays; nitric oxide (NO) levels measurement and intracellular calcium handling using DAF-2DA and Fluo-4-AM, respectively; cellular biopterin content by HPLC; activation of Akt pathway using western blot analysis. For the chemical analyses of AE, stock solutions of the standards (+)catechin and quercetin were used for obtaining linear calibration curves. Identification and quantification of flavonoids in AE were based on comparisons with the retention times, increase in peak area determine by co-injection of AE with standards, UV-Vis scan and standard curves of known spectra. Results were expressed as mean ± standard deviation and data were analyzed using ANOVA followed by Tukey's post-test (p < 0.05). RESULTS: Although in vivo data have revealed the participation of NO in increasing of acute blood flow on abdominal aorta, in vitro analysis demonstrated that vasodilatation AE-induced is not related to its direct action on endothelial cells inducing eNOS activation. Besides, we demonstrated in isolated endothelial cells that highest concentrations of AE caused a reduction in NO levels, effect that could be partly justified by inhibition of Akt phosphorylation which, in turn, could decrease NOS activation. The involvement of cell transduction pathways involving variations in intracellular calcium and biopterins concentration were discarded. The participation of catechin and quercetin, identified in AE, was postulated to induce the responses of AE in REC. CONCLUSIONS: Despite the responses in vitro, vasodilation prevailed in vivo, probably by activating intermediate pathways, validating a potential beneficial effect of AE in reducing cardiovascular risks.


Assuntos
Circulação Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Euterpe/química , Extratos Vegetais/farmacologia , Animais , Biopterinas/metabolismo , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Masculino , Óxido Nítrico/metabolismo , Extratos Vegetais/uso terapêutico , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Água/química
11.
Circ Res ; 128(5): 585-601, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33494625

RESUMO

RATIONALE: In diabetic patients, heart failure with predominant left ventricular (LV) diastolic dysfunction is a common complication for which there is no effective treatment. Oxidation of the NOS (nitric oxide synthase) cofactor tetrahydrobiopterin (BH4) and dysfunctional NOS activity have been implicated in the pathogenesis of the diabetic vascular and cardiomyopathic phenotype. OBJECTIVE: Using mice models and human myocardial samples, we evaluated whether and by which mechanism increasing myocardial BH4 availability prevented or reversed LV dysfunction induced by diabetes. METHODS AND RESULTS: In contrast to the vascular endothelium, BH4 levels, superoxide production, and NOS activity (by liquid chromatography) did not differ in the LV myocardium of diabetic mice or in atrial tissue from diabetic patients. Nevertheless, the impairment in both cardiomyocyte relaxation and [Ca2+]i (intracellular calcium) decay and in vivo LV function (echocardiography and tissue Doppler) that developed in wild-type mice 12 weeks post-diabetes induction (streptozotocin, 42-45 mg/kg) was prevented in mGCH1-Tg (mice with elevated myocardial BH4 content secondary to trangenic overexpression of GTP-cyclohydrolase 1) and reversed in wild-type mice receiving oral BH4 supplementation from the 12th to the 18th week after diabetes induction. The protective effect of BH4 was abolished by CRISPR/Cas9-mediated knockout of nNOS (the neuronal NOS isoform) in mGCH1-Tg. In HEK (human embryonic kidney) cells, S-nitrosoglutathione led to a PKG (protein kinase G)-dependent increase in plasmalemmal density of the insulin-independent glucose transporter GLUT-1 (glucose transporter-1). In cardiomyocytes, mGCH1 overexpression induced a NO/sGC (soluble guanylate cyclase)/PKG-dependent increase in glucose uptake via GLUT-1, which was instrumental in preserving mitochondrial creatine kinase activity, oxygen consumption rate, LV energetics (by 31phosphorous magnetic resonance spectroscopy), and myocardial function. CONCLUSIONS: We uncovered a novel mechanism whereby myocardial BH4 prevents and reverses LV diastolic and systolic dysfunction associated with diabetes via an nNOS-mediated increase in insulin-independent myocardial glucose uptake and utilization. These findings highlight the potential of GCH1/BH4-based therapeutics in human diabetic cardiomyopathy. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Biopterinas/análogos & derivados , Cardiomiopatias Diabéticas/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Biopterinas/farmacologia , Biopterinas/uso terapêutico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , GTP Cicloidrolase/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
12.
Free Radic Biol Med ; 165: 111-126, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497797

RESUMO

Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 µM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.


Assuntos
Ácido Ascórbico , Doenças Vasculares , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Biopterinas , Endotélio Vascular , Glutationa , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo
13.
Aging (Albany NY) ; 13(3): 3368-3385, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323558

RESUMO

AIMS: We have previously reported that nano-selenium quantum dots (SeQDs) prevented endothelial dysfunction in atherosclerosis. This study is to investigate whether amorphous SeQDs (A-SeQDs) increase endogenous tetrahydrobiopterin biosynthesis to alleviate pulmonary arterial hypertension. RESULTS: Both A-SeQDs and C-SeQDs were stable under physiological conditions, while the size of A-SeQDs was smaller than C-SeQDs by high resolution-transmission electron microscopy scanning. In monocrotaline-injected mice, oral administration of A-SeQDs was more effective to decrease pulmonary arterial pressure, compared to C-SeQDs and organic selenium. Further, A-SeQDs increased both nitric oxide productions and intracellular BH4 levels, upregulated dihydrofolate reductase activity in lungs, and improved pulmonary arterial remodeling. Gene deletion of dihydrofolate reductase abolished these effects produced by A-SeQDs in mice. Finally, the blood levels of tetrahydrobiopterin and selenium were decreased in patients with pulmonary arterial hypertension. CONCLUSION: A-SeQDs increase intracellular tetrahydrobiopterin to prevent pulmonary arterial hypertension through recoupling endothelial nitric oxide synthase. METHODS: Two polymorphs of SeQDs and A-SeQDs, and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Mice were injected with monocrotaline to induce pulmonary arterial hypertension in vivo. Pulmonary arterial pressure was measured.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Pontos Quânticos/química , Selênio , Idoso , Idoso de 80 Anos ou mais , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Tamanho da Partícula , Selênio/química , Selênio/farmacologia
14.
Sci Rep ; 10(1): 19844, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199757

RESUMO

This study aimed to investigate the influence of chronic ischemia on nitric oxide biosynthesis in the bladder and the effect of administering tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase (eNOS), on chronic ischemia-related lower urinary tract dysfunction (LUTD). This study divided male Sprague-Dawley rats into Control, chronic bladder ischemia (CBI) and CBI with oral BH4 supplementation (CBI/BH4) groups. In the CBI group, bladder capacity and bladder muscle strip contractility were significantly lower, and arterial wall was significantly thicker than in Controls. Significant improvements were seen in bladder capacity, muscle strip contractility and arterial wall thickening in the CBI/BH4 group as compared with the CBI group. Western blot analysis of bladder showed expressions of eNOS (p = 0.043), HIF-1α (p < 0.01) and dihydrofolate reductase (DHFR) (p < 0.01), which could regenerate BH4, were significantly higher in the CBI group than in Controls. In the CBI/BH4 group, HIF-1α (p = 0.012) and DHFR expressions (p = 0.018) were significantly decreased compared with the CBI group. Our results suggest that chronic ischemia increases eNOS and DHFR in the bladder to prevent atherosclerosis progression. However, DHFR could not synthesize sufficient BH4 relative to the increased eNOS, resulting in LUTD. BH4 supplementation protects lower urinary tract function by promoting eNOS activity.


Assuntos
Biopterinas/análogos & derivados , Isquemia/prevenção & controle , Óxido Nítrico/biossíntese , Bexiga Urinária/irrigação sanguínea , Animais , Disponibilidade Biológica , Biopterinas/administração & dosagem , Biopterinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/etiologia , Isquemia/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Tetra-Hidrofolato Desidrogenase/metabolismo , Bexiga Urinária/efeitos dos fármacos
15.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32699151

RESUMO

Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.


Assuntos
Biopterinas/análogos & derivados , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Animais , Biopterinas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa , Ratos , Ratos Long-Evans , Transdução de Sinais/fisiologia
16.
Biochem Pharmacol ; 176: 113887, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112882

RESUMO

Immunotherapy is a first-line treatment for many tumor types. However, most breast tumors are immuno-suppressive and only modestly respond to immunotherapy. We hypothesized that correcting arginine metabolism might improve the immunogenicity of breast tumors. We tested whether supplementing sepiapterin, the precursor of tetrahydrobiopterin (BH4)-the nitric oxide synthase (NOS) cofactor-redirects arginine metabolism from the pathway synthesizing polyamines to that of synthesizing nitric oxide (NO) and make breast tumors more immunogenic. We showed that sepiapterin elevated NO but lowered polyamine levels in tumor cells, as well as in tumor-associated macrophages (TAMs). This not only suppressed tumor cell proliferation, but also induced the conversion of TAMs from the immuno-suppressive M2-type to immuno-stimulatory M1-type. Furthermore, sepiapterin abrogated the expression of a checkpoint ligand, PD-L1, in tumors in a STAT3-dependent manner. This is the first study which reveals that supplementing sepiapterin normalizes arginine metabolism, improves the immunogenicity and inhibits the growth of breast tumor cells.


Assuntos
Arginina/metabolismo , Neoplasias da Mama/metabolismo , Macrófagos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Poliaminas/metabolismo , Pterinas/farmacologia , Antígeno B7-H1/metabolismo , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Macrófagos/classificação , Macrófagos/metabolismo , Óxido Nítrico Sintase/metabolismo , Pterinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1
17.
Biochem Biophys Res Commun ; 521(4): 1049-1054, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31732151

RESUMO

This study explored whether zinc supplementation alleviates diabetic endothelial dysfunction and the possible mechanisms underlying. We found that high glucose exposure significantly increased reactive oxygen species (ROS) and decreased guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels in bovine aortic endothelial cells (BAECs) in a time-dependent manner. High glucose increased zinc release from GTPCH1 in a similar trend. Zinc supplementation restored GTPCH1 and BH4 levels and blocked ROS accumulation in both BACEs and wild type GTPCH1 transfected HEK293 cells, but not in the zinc-free C141R mutant of GTPCH1 transfected ones. In vivo experiments showed that exogenous supplementation of zinc to streptozotocin (STZ)-induced diabetic mice partially improved the impaired maximal endothelium-dependent vasorelaxation, reversed the aberrant reduction of GTPCH1 and BH4, and suppressed the elevation of ROS in the aortas. In conclusion, our study demonstrated a novel mechanism that via GTPCH1 restoration zinc supplementation exerts a protective benefit on diabetic endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Suplementos Nutricionais , Endotélio Vascular/fisiopatologia , GTP Cicloidrolase/metabolismo , Zinco/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Bovinos , Endotélio Vascular/efeitos dos fármacos , GTP Cicloidrolase/deficiência , Deleção de Genes , Glucose/toxicidade , Humanos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
18.
Nutr Neurosci ; 23(8): 628-639, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30359206

RESUMO

Phenylalanine hydroxylase (PAH) deficiency, commonly named phenylketonuria (PKU) is a disorder of phenylalanine (Phe) metabolism inherited with an autosomal recessive trait. It is characterized by high blood and cerebral Phe levels, resulting in intellectual disabilities, seizures, etc. Early diagnosis and treatment of the patients prevent major neuro-cognitive deficits. Treatment consists of a lifelong restriction of Phe intake, combined with the supplementation of special medical foods, such as Amino Acid medical food (AA-mf), enriched in tyrosine (Tyr) and other amino acids and nutrients to avoid nutritional deficits. Developmental and neurocognitive outcomes for patients, however, remain suboptimal, especially when adherence to the demanding diet is poor. Additions to treatment include new, more palatable foods, based on Glycomacropeptide that contains limited amounts of Phe, the administration of large neutral amino acids to prevent phenylalanine entry into the brain and tetrahydrobiopterin cofactor capable of increasing residual PAH activity. Moreover, further efforts are underway to develop an oral therapy containing phenylalanine ammonia-lyase. Nutritional support of PKU future mothers (maternal PKU) is also discussed. This review aims to summarize the current literature on new PKU treatment strategies.


Assuntos
Fenilcetonúrias/dietoterapia , Aminoácidos/administração & dosagem , Animais , Biopterinas/administração & dosagem , Biopterinas/análogos & derivados , Caseínas/administração & dosagem , Dieta , Dieta com Restrição de Proteínas , Dietética , Humanos , Fragmentos de Peptídeos/administração & dosagem
19.
Artigo em Inglês | MEDLINE | ID: mdl-31557799

RESUMO

The purpose of the present study was to analyze the actions of transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin (CS) and of its antagonist capsazepine (CZ), on cardiac function as well as endothelial biomarkers and some parameters related with nitric oxide (NO) release in L-NG-nitroarginine methyl ester (L-NAME)-induced hypertensive rats. NO has been implicated in the pathophysiology of systemic arterial hypertension (SAHT). We analyzed the levels of nitric oxide (NO), tetrahydrobiopterin (BH4), malondialdehyde (MDA), total antioxidant capacity (TAC), cyclic guanosin monophosphate (cGMP), phosphodiesterase-3 (PDE-3), and the expression of endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GTPCH-1), protein kinase B (AKT), and TRPV1 in serum and cardiac tissue of normotensive (118±3 mmHg) and hypertensive (H) rats (165 ± 4 mmHg). Cardiac mechanical performance (CMP) was calculated and NO was quantified in the coronary effluent in the Langendorff isolated heart model. In hypertensive rats capsaicin increased the levels of NO, BH4, cGMP, and TAC, and reduced PDE-3 and MDA. Expressions of eNOS, GTPCH-1, and TRPV1 were increased, while AKT was decreased. Capsazepine diminished these effects. In the hypertensive heart, CMP improved with the CS treatment. In conclusion, the activation of TRPV1 in H rats may be an alternative mechanism for the improvement of cardiac function and systemic levels of biomarkers related to the bioavailability of NO.


Assuntos
Coração/efeitos dos fármacos , Hipertensão/metabolismo , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Biomarcadores/sangue , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Pressão Sanguínea , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Hipertensão/tratamento farmacológico , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Resistência Vascular
20.
Nutrients ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461828

RESUMO

Phenylketonuria (PKU) is treated with dietary restrictions and sometimes tetrahydrobiopterin (BH4). PKU patients are at risk for developing micronutrient deficiencies, such as vitamin B12 and folic acid, likely due to their diet. Tyrosinemia type 1 (TT1) is similar to PKU in both pathogenesis and treatment. TT1 patients follow a similar diet, but nutritional deficiencies have not been investigated yet. In this retrospective study, biomarkers of micronutrients in TT1 and PKU patients were investigated and outcomes were correlated to dietary intake and anthropometric measurements from regular follow-up measurements from patients attending the outpatient clinic. Data was analyzed using Kruskal-Wallis, Fisher's exact and Spearman correlation tests. Furthermore, descriptive data were used. Overall, similar results for TT1 and PKU patients (with and without BH4) were observed. In all groups high vitamin B12 concentrations were seen rather than B12 deficiencies. Furthermore, all groups showed biochemical evidence of vitamin D deficiency. This study shows that micronutrients in TT1 and PKU patients are similar and often within the normal ranges and that vitamin D concentrations could be optimized.


Assuntos
Aminoácidos/administração & dosagem , Dieta com Restrição de Proteínas , Suplementos Nutricionais , Micronutrientes/sangue , Estado Nutricional , Fenilcetonúrias/dietoterapia , Tirosinemias/dietoterapia , Adolescente , Adulto , Idoso , Aminoácidos/efeitos adversos , Biomarcadores/sangue , Biopterinas/análogos & derivados , Biopterinas/uso terapêutico , Criança , Pré-Escolar , Cicloexanonas/uso terapêutico , Dieta com Restrição de Proteínas/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Nitrobenzoatos/uso terapêutico , Fenilcetonúrias/sangue , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/fisiopatologia , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Tirosinemias/sangue , Tirosinemias/fisiopatologia , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/etiologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA