Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxins (Basel) ; 11(9)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540492

RESUMO

Acid-sensing ion channels (ASICs), which are present in almost all types of neurons, play an important role in physiological and pathological processes. The ASIC1a subtype is the most sensitive channel to the medium's acidification, and it plays an important role in the excitation of neurons in the central nervous system. Ligands of the ASIC1a channel are of great interest, both fundamentally and pharmaceutically. Using a two-electrode voltage-clamp electrophysiological approach, we characterized lindoldhamine (a bisbenzylisoquinoline alkaloid extracted from the leaves of Laurus nobilis L.) as a novel inhibitor of the ASIC1a channel. Lindoldhamine significantly inhibited the ASIC1a channel's response to physiologically-relevant stimuli of pH 6.5-6.85 with IC50 range 150-9 µM, but produced only partial inhibition of that response to more acidic stimuli. In mice, the intravenous administration of lindoldhamine at a dose of 1 mg/kg significantly reversed complete Freund's adjuvant-induced thermal hyperalgesia and inflammation; however, this administration did not affect the pain response to an intraperitoneal injection of acetic acid (which correlated well with the function of ASIC1a in the peripheral nervous system). Thus, we describe lindoldhamine as a novel antagonist of the ASIC1a channel that could provide new approaches to drug design and structural studies regarding the determinants of ASIC1a activation.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/fisiologia , Anti-Inflamatórios/uso terapêutico , Derivados de Benzeno/uso terapêutico , Quinolinas/uso terapêutico , Ácido Acético , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Feminino , Adjuvante de Freund , Temperatura Alta/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Oócitos/fisiologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Quinolinas/farmacologia , Xenopus laevis
2.
Neurotherapeutics ; 15(2): 402-414, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29549622

RESUMO

Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Hipotálamo/metabolismo , Transtornos de Enxaqueca/metabolismo , Nociceptividade/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/farmacologia , Animais , Depressão Alastrante da Atividade Elétrica Cortical , Humanos , Transtornos de Enxaqueca/tratamento farmacológico
3.
World J Gastroenterol ; 23(33): 6065-6076, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28970722

RESUMO

AIM: To evaluate whether non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastropathy is a clinically predictive model of referred visceral hypersensitivity. METHODS: Gastric ulcer pain was induced by the oral administration of indomethacin to male, CD1 mice (n = 10/group) and then assessed by measuring referred abdominal hypersensitivity to tactile application. A diverse range of pharmacological mechanisms contributing to the pain were subsequently investigated. These mechanisms included: transient receptor potential (TRP), sodium and acid-sensing ion channels (ASICs) as well as opioid receptors and guanylate cyclase C (GC-C). RESULTS: Results showed that two opioids and a GC-C agonist, morphine, asimadoline and linaclotide, respectively, the TRP antagonists, AMG9810 and HC-030031 and the sodium channel blocker, carbamazepine, elicited a dose- and/or time-dependent attenuation of referred visceral hypersensitivity, while the ASIC blocker, amiloride, was ineffective at all doses tested. CONCLUSION: Together, these findings implicate opioid receptors, GC-C, and sodium and TRP channel activation as possible mechanisms associated with visceral hypersensitivity. More importantly, these findings also validate NSAID-induced gastropathy as a sensitive and clinically predictive mouse model suitable for assessing novel molecules with potential pain-attenuating properties.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios não Esteroides/toxicidade , Hiperalgesia/patologia , Úlcera Gástrica/complicações , Dor Visceral/patologia , Acetanilidas/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Acrilamidas/uso terapêutico , Amilorida/uso terapêutico , Analgésicos Opioides/uso terapêutico , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Morfina/uso terapêutico , Medição da Dor/métodos , Purinas/uso terapêutico , Distribuição Aleatória , Receptores do Fator Natriurético Atrial/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Úlcera Gástrica/induzido quimicamente , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/metabolismo , Dor Visceral/etiologia
4.
J Pain ; 18(5): 526-534, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28062311

RESUMO

Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear. PERSPECTIVE: An acidic milieu is a trigger of pain in many clinical conditions. The aim of this study was to identify the contribution of the currently hypothesized sensors of acid-induced pain in humans. Surprisingly, inhibition of these receptors did not alter acidosis-induced pain.


Assuntos
Acidose/complicações , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Dor/etiologia , Canal de Cátion TRPA1/antagonistas & inibidores , Canais de Cátion TRPV/antagonistas & inibidores , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Adulto , Amilorida/uso terapêutico , Análise de Variância , Capsaicina/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oximas/uso terapêutico , Medição da Dor , Pirazinas/uso terapêutico , Piridinas/uso terapêutico
5.
Spine (Phila Pa 1976) ; 42(11): E633-E641, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879566

RESUMO

STUDY DESIGN: Controlled, interventional animal study. OBJECTIVE: To examine the effect of an inhibitor of acid-sensing ion channel 3 (ASIC3) on pain-related behavior induced by application of the nucleus pulposus (NP) onto the dorsal root ganglion (DRG) in rats. SUMMARY OF BACKGROUND DATA: ASIC3 is associated with acidosis pain in inflamed or ischemic tissues and is expressed in sensory neurons and NP cells. The ASIC3 inhibitor, APETx2, increases the mechanical threshold of pain in models of knee osteoarthritis or postoperative pain. However, the efficacy of APETx2 for pain relief in the NP application model remains unknown. METHODS: Autologous NP was applied to the left L5 nerve root of 183 adult female Sprague-Dawley rats. The DRGs were treated with NP plus one of the following four treatments: saline solution (SM), low (0.01 µg: LD), medium (0.1 µg: MD), or high dose (1.0 µg: HD) of APETx2. Behavioral testing was performed to investigate the mechanical withdrawal threshold using von Frey hairs. Expression of nerve growth factor, hypoxia-inducible factor-1α (HIF1α), activating transcription factor-3, and ionized calcium-binding adaptor molecule-1 was evaluated using immunohistochemistry. Statistical differences among multiple groups were assessed using the Steel test, the Tukey-Kramer test, and the Dunnett test. P < 0.05 were considered significant. RESULTS: The thresholds in the HD group were higher than those in the SM group at Days 14 and 21 (P < 0.05). In the MD group, the threshold was higher than in the SM group at Day 14 (P < 0.05). High doses of APETx2 reduced the expression of HIF1α after Day 14 compared with the SM group (P < 0.05). CONCLUSION: APETx2 significantly improved pain-related behavior in a dose-dependent manner. APETx2 may inhibit ASIC3 and partly inhibit Nav1.8 channels. This ASIC3 channel inhibitor may be a potential therapeutic agent in early-stage lumbar disc herniation. LEVEL OF EVIDENCE: N/A.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Venenos de Cnidários/uso terapêutico , Núcleo Pulposo/metabolismo , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Raízes Nervosas Espinhais/efeitos dos fármacos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Venenos de Cnidários/farmacologia , Modelos Animais de Doenças , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA