Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 104(4): 133-143, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419692

RESUMO

Licorice is a traditional Chinese medicine and recorded to have pain relief effects in national pharmacopoeia, but the mechanisms behind these effects have not been fully explored. Among the hundreds of compounds in licorice, licochalcone A (LCA) and licochalcone B (LCB) are two important components belonging to the chalcone family. In this study, we compared the analgesic effects of these two licochalcones and the molecular mechanisms. LCA and LCB were applied in cultured dorsal root ganglion (DRG) neurons, and the voltage-gated sodium (NaV) currents and action potentials were recorded. The electrophysiological experiments showed that LCA can inhibit NaV currents and dampen excitabilities of DRG neurons, whereas LCB did not show inhibition effect on NaV currents. Because the NaV1.7 channel can modulate Subthreshold membrane potential oscillations in DRG neuron, which can palliate neuropathic pain, HEK293T cells were transfected with NaV1.7 channel and recorded with whole-cell patch clamp. LCA can also inhibit NaV1.7 channels exogenously expressed in HEK293T cells. We further explored the analgesic effects of LCA and LCB on formalin-induced pain animal models. The animal behavior tests revealed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, and LCB can inhibit the pain responses during phase 2. The differences of the effects on NaV currents between LCA and LCB provide us with the basis for developing NaV channel inhibitors, and the novel findings of analgesic effects indicate that licochalcones can be developed into effective analgesic medicines. SIGNIFICANCE STATEMENT: This study found that licochalcone A (LCA) can inhibit voltage-gated sodium (NaV) currents, dampen excitabilities of dorsal root ganglion neurons, and inhibit the NaV1.7 channels exogenously expressed in HEK293T cells. Animal behavior tests showed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, whereas licochalcone B can inhibit the pain responses during phase 2. These findings indicate that licochalcones could be the leading compounds for developing NaV channel inhibitors and effective analgesic medicines.


Assuntos
Neuralgia , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Bloqueadores dos Canais de Sódio/farmacologia , Células HEK293 , Gânglios Espinais , Sódio , Canal de Sódio Disparado por Voltagem NAV1.7
2.
J Ethnopharmacol ; 306: 116161, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36646158

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY: The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS: The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS: By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 µM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION: Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.


Assuntos
Fitol , Bloqueadores dos Canais de Sódio , Ratos , Animais , Fitol/farmacologia , Fitol/uso terapêutico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Dor/tratamento farmacológico , Canais de Sódio/fisiologia , Neurônios
3.
Biosens Bioelectron ; 216: 114617, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027802

RESUMO

Unintended binding of small-molecule drugs to ion channels affects electrophysiological properties of cardiomyocytes and potentially leads to arrhythmia and heart failure. The waveforms of intracellular action potentials reflect the coordinated activities of cardiac ion channels and serve as a reliable means for assessing drug toxicity, but the implementation is limited by the low throughput of patch clamp for intracellular recording measurements. In the last decade, several new technologies are being developed to address this challenge. We recently developed the nanocrown electrode array (NcEA) technology that allows robust, parallel, and long-duration recording of intracellular action potentials (iAPs). Here, we demonstrate that NcEAs allow comparison of iAP waveforms before and after drug treatment from the same cell. This self-referencing comparison not only shows distinct drug effects of sodium, potassium, and calcium blockers, but also reveals subtle differences among three subclasses of sodium channel blockers with sub-millisecond accuracy. Furthermore, self-referencing comparison unveils heterogeneous drug responses among different cells. In our study, whole-panel simultaneous intracellular recording can be reliably achieved with ∼94% success rate. The average duration of intracellular recording is ∼30 min and some last longer than 2 h. With its high reliability, long recording duration, and easy-to-use nature, NcEA would be useful for iAP-based preclinical drug screening.


Assuntos
Técnicas Biossensoriais , Cardiotoxicidade , Potenciais de Ação/fisiologia , Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Reprodutibilidade dos Testes , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
4.
Mol Genet Genomic Med ; 10(10): e2024, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906921

RESUMO

BACKGROUND: Typical patients with KCNQ2 (OMIM# 602235) epileptic encephalopathy present early neonatal-onset intractable seizures with a burst suppression EEG pattern and severe developmental delay or regression, and those patients always fail first-line treatment with sodium channel blockers. Vitamin B6, either pyridoxine or pyridoxal 50-phosphate, has been demonstrated to improve seizure control in intractable epilepsy. METHODS: Here, we collected and summarized the clinical data for four independent cases diagnosed with pyridoxine-responsive epileptic encephalopathy, and their exome sequencing data. Moreover, we reviewed all published cases and summarized the clinical features, genetic variants, and treatment of pyridoxine-responsive KCNQ2 epileptic encephalopathy. RESULTS: All four cases showed refractory seizures during the neonatal period or infancy, accompanied by global development delay. Four pathogenetic variants of KCNQ2 were uncovered and confirmed by Sanger sequencing: KCNQ2 [NM_172107.4: c.2312C > T (p.Thr771Ile), c.873G > C (p.Arg291Ser), c.652 T > A (p.Trp218Arg) and c.913-915del (p. Phe305del)]. Sodium channel blockers and other anti-seizure medications failed to control their seizures. The frequency of seizures gradually decreased after treatment with high-dose pyridoxine. In case 1, case 2, and case 4, clinical seizures relapsed when pyridoxine was withdrawn, and seizures were controlled again when pyridoxine treatment was resumed. CONCLUSION: Our study suggests that pyridoxine may be a promising adjunctive treatment option for patients with KCNQ2 epileptic encephalopathy.


Assuntos
Epilepsia Generalizada , Canal de Potássio KCNQ2 , Eletroencefalografia , Humanos , Recém-Nascido , Canal de Potássio KCNQ2/genética , Fosfatos , Piridoxal , Piridoxina/uso terapêutico , Bloqueadores dos Canais de Sódio
5.
Rev Med Interne ; 43(10): 596-602, 2022 Oct.
Artigo em Francês | MEDLINE | ID: mdl-35835622

RESUMO

Paroxysmal vascular acrosyndromes are related to a peripheral vasomotor disorder and presented as paroxysmal color changes of the fingers. They include primary Raynaud's phenomenon (RP), which is the most common, secondary RP and erythermalgia. They are to be distinguished from non-paroxysmal acrosyndromes such as acrocyanosis and chilblains, which are very frequent and often associated with RP, digital ischemia and necrosis, spontaneous digital hematoma and acrocholosis. The challenge of a consultation for a vascular acrosyndrome is to make positive diagnosis through history and clinical examination, and to specify its nature, to prescribe complementary exams. In any patient consulting for RP, assessment includes at least an antinuclear antibody test and capillaroscopy. For erythermalgia, a blood count and even a search for JAK2 mutation are required. A thryoid-stimulating hormon assay, a test for antinuclear antibodies, and a search for small fiber neuropathy are also performed. The treatment of RP is essentially documented for secondary RP where calcium channel blockers are indicated in first line, and iloprost in severe cases. The treatment of primitive erythermalgia is based on sodium channel blockers such as mexiletine or lidocaine infusions, and on drugs effective on neuropathic pain, such as gabapentin or amitryptiline, in case of erythermalgia associated with small fiber neuropathy. The treatment of erythermalgia associated with myeloproliferative syndromes is based on etiological treatment and aspirin.


Assuntos
Eritromelalgia , Doença de Raynaud , Neuropatia de Pequenas Fibras , Anticorpos Antinucleares , Aspirina , Bloqueadores dos Canais de Cálcio/uso terapêutico , Gabapentina , Humanos , Iloprosta , Lidocaína , Mexiletina , Doença de Raynaud/diagnóstico , Doença de Raynaud/etiologia , Doença de Raynaud/terapia , Bloqueadores dos Canais de Sódio/uso terapêutico
6.
Physiol Rep ; 9(16): e14975, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34405579

RESUMO

Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aß) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aß fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aß neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aß fibers during chronic inflammation.


Assuntos
Potenciais de Ação , Neurônios Aferentes/metabolismo , Dor Nociceptiva/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Nociceptividade , Dor Nociceptiva/fisiopatologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
7.
Front Immunol ; 12: 665785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248944

RESUMO

Tuberculosis (TB) remains a challenging global health concern and claims more than a million lives every year. We lack an effective vaccine and understanding of what constitutes protective immunity against TB to inform rational vaccine design. Moreover, treatment of TB requires prolonged use of multi-drug regimens and is complicated by problems of compliance and drug resistance. While most Mycobacterium tuberculosis (Mtb) bacilli are quickly killed by the drugs, the prolonged course of treatment is required to clear persistent drug-tolerant subpopulations. Mtb's differential sensitivity to drugs is, at least in part, determined by the interaction between the bacilli and different host macrophage populations. Therefore, to design better treatment regimens for TB, we need to understand and modulate the heterogeneity and divergent responses that Mtb bacilli exhibit within macrophages. However, developing drugs de-novo is a long and expensive process. An alternative approach to expedite the development of new TB treatments is to repurpose existing drugs that were developed for other therapeutic purposes if they also possess anti-tuberculosis activity. There is growing interest in the use of immune modulators to supplement current anti-TB drugs by enhancing the host's antimycobacterial responses. Ion channel blocking agents are among the most promising of the host-directed therapeutics. Some ion channel blockers also interfere with the activity of mycobacterial efflux pumps. In this review, we discuss some of the ion channel blockers that have shown promise as potential anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Canais Iônicos/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tuberculose/microbiologia
8.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281272

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common monogenic cardiac disease with a highly variable phenotypic expression, ranging from asymptomatic to drug refractory heart failure (HF) presentation. Pharmacological therapy is the first line of treatment, but options are currently limited to nonspecific medication like betablockers or calcium channel inhibitors, with frequent suboptimal results. While being the gold standard practice for the management of drug refractory HCM patients, septal reduction therapy (SRT) remains an invasive procedure with associated surgical risks and it requires the expertise of the operating centre, thus limiting its accessibility. It is therefore with high interest that researchers look for pharmacological alternatives that could provide higher rates of success. With new data gathering these past years as well as the development of a new drug class showing promising results, this review provides an up-to-date focused synthesis of existing medical treatment options and future directions for HCM pharmacological treatment.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cardiomiopatia Hipertrófica/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Miosinas/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/uso terapêutico , Espironolactona/uso terapêutico , Vasodilatadores/uso terapêutico
9.
Ann Neurol ; 89(2): 226-241, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068018

RESUMO

OBJECTIVE: Epileptic spasms are a hallmark of severe seizure disorders. The neurophysiological mechanisms and the neuronal circuit(s) that generate these seizures are unresolved and are the focus of studies reported here. METHODS: In the tetrodotoxin model, we used 16-channel microarrays and microwires to record electrophysiological activity in neocortex and thalamus during spasms. Chemogenetic activation was used to examine the role of neocortical pyramidal cells in generating spasms. Comparisons were made to recordings from infantile spasm patients. RESULTS: Current source density and simultaneous multiunit activity analyses indicate that the ictal events of spasms are initiated in infragranular cortical layers. A dramatic pause of neuronal activity was recorded immediately prior to the onset of spasms. This preictal pause is shown to share many features with the down states of slow wave sleep. In addition, the ensuing interictal up states of slow wave rhythms are more intense in epileptic than control animals and occasionally appear sufficient to initiate spasms. Chemogenetic activation of neocortical pyramidal cells supported these observations, as it increased slow oscillations and spasm numbers and clustering. Recordings also revealed a ramp-up in the number of neocortical slow oscillations preceding spasms, which was also observed in infantile spasm patients. INTERPRETATION: Our findings provide evidence that epileptic spasms can arise from the neocortex and reveal a previously unappreciated interplay between brain state physiology and spasm generation. The identification of neocortical up states as a mechanism capable of initiating epileptic spasms will likely provide new targets for interventional therapies. ANN NEUROL 2021;89:226-241.


Assuntos
Ondas Encefálicas/fisiologia , Neocórtex/fisiopatologia , Células Piramidais/fisiologia , Espasmos Infantis/fisiopatologia , Tálamo/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrocorticografia , Feminino , Humanos , Lactente , Masculino , Neocórtex/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Bloqueadores dos Canais de Sódio/toxicidade , Espasmo/induzido quimicamente , Espasmo/fisiopatologia , Espasmos Infantis/induzido quimicamente , Tetrodotoxina/toxicidade , Tálamo/efeitos dos fármacos
10.
Int J Biol Macromol ; 163: 842-853, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653379

RESUMO

The main objective of the present study was to develop a sustained release multiple-unit beads of lamotrigine based on ionotropically cross-linked natural polysaccharides such as pectin (PTN) and okra mucilage (OM) and optimize the polymer-concentration, polymer ratio and cross-linker concentration by 23 full factorial design. Two different levels of three independent variables (total polymer concentration, polymer ratio and [CaCl2]) were considered for the experimental design. Drug-polymers compatibility was examined by FTIR, DSC, TGA and powder-XRD. The surface morphology of the bead before and after dissolution test was examined by SEM. Effects of the independent variables on bead-size, drug-encapsulation-efficiency (DEE), drug-release along with release similarity and difference factors were examined. The independent variables were then numerically optimized using Design-Expert software (Version 12) with the targets to meet USP-reference release profile after the analysis of variance of all the response parameters such as DEE, percent drug release at 2 h, 5 h, 12 h, Korsmeyer-Peppas rate constant, release similarity and difference factors. The optimized formulation showed excellent DEE of 89.2 ± 4.4% and a sustained release profile with release similarity factor of 94.9. Kinetic modeling of drug release data demonstrated a release mechanism combined of hydration, diffusion and erosion.


Assuntos
Abelmoschus/química , Portadores de Fármacos/química , Lamotrigina/administração & dosagem , Microesferas , Pectinas/química , Mucilagem Vegetal/química , Bloqueadores dos Canais de Sódio/administração & dosagem , Varredura Diferencial de Calorimetria , Preparações de Ação Retardada , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Mucilagem Vegetal/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
11.
Mol Brain ; 13(1): 73, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393368

RESUMO

Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Gânglios Espinais/efeitos dos fármacos , Limoninas/farmacologia , Neuralgia/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/virologia , Limoninas/administração & dosagem , Limoninas/química , Neuralgia/metabolismo , Neuralgia/virologia , Nociceptores/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Tetrodotoxina/farmacologia
12.
Environ Toxicol ; 35(7): 774-782, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32061153

RESUMO

This study aims to investigate the protective effects of the Bauhinia championii (BC) against ischemia/reperfusion (I/R)-induced injury in an isolated heart model. Langendorff-perfused C57BL/6JNarl mice hearts were performed with 30 minutes ischemia and 60 minutes reperfusion by left anterior descending artery ligation. Before reperfusion, boiling water extracts of BC (10 mg/L) was pretreated for 15 minutes. During reperfusion, BC significantly decreased the occurrence of ventricular arrhythmias by lead II electrocardiogram (ECG). Electrophysiological effect of BC was further determined in isolated ventricular myocytes by whole-cell patch clamp technique. The underlying mechanism may result from its Na+ channel blocking activity characterized with reduced rise slope of action potential and Na+ current density. Moreover, BC dramatically reduced I/R-caused infarct size, which was accessed by 2,3,5-triphenyltetrazolium chloride (TTC) assay. Since BC decreased I/R-induced myoglobin release and oxidation of Ca2+ -calmodulin-dependent protein kinase, inhibition of myocardial necroptosis may account for the protective effects of BC on myocytes lose. This study indicated that BC may prevent I/R induced ventricular arrhythmias and myocyte death by blocking Na+ channels and decreasing necroptosis, respectively. Since most of the available antiarrhythmic remedies have unwanted adverse actions, BC could be a novel candidate for the treatment of myocardial infarction and ventricular arrhythmia.


Assuntos
Bauhinia/química , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Extratos Vegetais/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Eletrocardiografia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necroptose/efeitos dos fármacos , Técnicas de Patch-Clamp , Componentes Aéreos da Planta/química , Extratos Vegetais/isolamento & purificação , Bloqueadores dos Canais de Sódio/isolamento & purificação , Canais de Sódio/metabolismo
13.
ACS Chem Neurosci ; 10(12): 4834-4846, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697467

RESUMO

Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.


Assuntos
Analgésicos/farmacologia , Flavanonas/farmacologia , Gânglios Espinais/citologia , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sódio/metabolismo , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Conformação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/metabolismo , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/uso terapêutico , Organismos Livres de Patógenos Específicos , Relação Estrutura-Atividade
14.
Neurotox Res ; 36(4): 788-795, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31148118

RESUMO

Hyperbaric oxygen (HBO2) is acutely toxic to the central nervous system, culminating in EEG spikes and tonic-clonic convulsions. GABA enhancers and sodium channel antagonists improve seizure latencies in HBO2 when administered individually, while combining antiepileptic drugs from different functional classes can provide greater seizure latency. We examined the combined effectiveness of GABA enhancers (tiagabine and gabapentin) with sodium channel antagonists (carbamazepine and lamotrigine) in delaying HBO2-induced seizures. A series of experiments in C57BL/6 mice exposed to 100% oxygen at 5 atmospheres absolute (ATA) were performed. We predicted equally effective doses from individual drug-dose response curves, and the combinations of tiagabine + carbamazepine or lamotrigine were tested to determine the maximally effective combined doses to be used in subsequent experiments designed to identify the type of pharmacodynamic interaction for three fixed-ratio combinations (1:3, 1:1, and 3:1) using isobolographic analysis. For both combinations, the maximally effective combined doses increased seizure latency over controls > 5-fold and were determined to interact synergistically for fixed ratios 1:1 and 3:1, additive for 1:3. These results led us to explore whether the benefits of these drug combinations could be extended to the lungs, since a centrally mediated mechanism is believed to mediate hyperoxic-induced cardiogenic lung injury. Indeed, both combinations attenuated bronchoalveolar lavage protein content by ~ 50%. Combining tiagabine with carbamazepine or lamotrigine not only affords greater antiseizure protection in HBO2 but also allows for lower doses to be used, minimizing side effects, and attenuating acute lung injury.


Assuntos
Anticonvulsivantes/administração & dosagem , Oxigenoterapia Hiperbárica , Oxigênio/toxicidade , Convulsões/induzido quimicamente , Bloqueadores dos Canais de Sódio/administração & dosagem , Tiagabina/administração & dosagem , Animais , Carbamazepina/administração & dosagem , Gabapentina/administração & dosagem , Lamotrigina/administração & dosagem , Camundongos Endogâmicos C57BL , Convulsões/tratamento farmacológico
15.
Nat Commun ; 10(1): 2566, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189915

RESUMO

There is clinical and scientific interest in developing local anesthetics with prolonged durations of effect from single injections. The need for such is highlighted by the current opioid epidemic. Site 1 sodium channel blockers such as tetrodotoxin (TTX) are extremely potent, and can provide very long nerve blocks but the duration is limited by the associated systemic toxicity. Here we report a system where slow release of TTX conjugated to a biocompatible and biodegradable polymer, poly(triol dicarboxylic acid)-co-poly(ethylene glycol) (TDP), is achieved by hydrolysis of ester linkages. Nerve block by the released TTX is enhanced by administration in a carrier with chemical permeation enhancer (CPE) properties. TTX release can be adjusted by tuning the hydrophilicity of the TDP polymer backbone. In vivo, 1.0-80.0 µg of TTX released from these polymers produced a range of durations of nerve block, from several hours to 3 days, with minimal systemic or local toxicity.


Assuntos
Anestésicos Locais/administração & dosagem , Portadores de Fármacos/química , Bloqueio Nervoso/métodos , Bloqueadores dos Canais de Sódio/administração & dosagem , Tetrodotoxina/administração & dosagem , Anestesia Local/métodos , Anestésicos Locais/farmacocinética , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/toxicidade , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Masculino , Camundongos , Permeabilidade , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacocinética , Tetrodotoxina/farmacocinética , Fatores de Tempo , Resultado do Tratamento
16.
Am J Cardiol ; 123(10): 1602-1609, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832963

RESUMO

To assess the frequency and costs of revascularization procedures in patients with stable ischemic heart disease (SIHD) initiating ranolazine versus traditional antianginals. Adults (≥18 years) with a diagnosis of SIHD who initiated ranolazine or a traditional antianginal (beta-blocker [BB], calcium channel blocker [CCB], or long-acting nitrate [LAN]) as second or third line therapy between 2008 and 2016, were selected from the IBM MarketScan Databases. Inverse probability weighting based on propensity score was employed to balance the ranolazine and traditional antianginals cohorts on patient clinical characteristics. Outcomes assessed were frequency and total cost of revascularization procedures over a 12-month follow-up. A total of 108,741 patients with SIHD were included. Of these, 18% initiated treatment with ranolazine, 21% received BBs, 24% received CCBs, and 37% were treated with LANs. Revascularization rates were significantly lower in ranolazine patients (11%) than in BB (16%) and LAN (14%) patients (both p <0.001), and more comparable to CCB patients (10%; p = 0.007). Compared with BB and LAN, those in the ranolazine cohort were less likely to have a revascularization procedure during hospitalization and had a shorter length of stay if hospitalized (all p <0.001). The mean healthcare costs associated with revascularization were lower in ranolazine patients ($2,933) than in BB ($4,465) and LAN ($3,609) patients (p <0.001), but similar to CCB patients ($2,753; p = 0.29). In conclusion, ranolazine treatment in patients with SIHD was associated with fewer revascularization procedures and lower associated healthcare costs compared with patients initiating BB or LAN, and comparable to patients initiating CCBs.


Assuntos
Custos de Cuidados de Saúde , Isquemia Miocárdica/terapia , Revascularização Miocárdica/tendências , Nitroglicerina/uso terapêutico , Ranolazina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Custo-Benefício , Preparações de Ação Retardada , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/economia , Revascularização Miocárdica/economia , Estudos Retrospectivos , Bloqueadores dos Canais de Sódio/uso terapêutico , Resultado do Tratamento , Estados Unidos , Vasodilatadores/uso terapêutico , Adulto Jovem
17.
Annu Rev Neurosci ; 42: 87-106, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30702961

RESUMO

Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.


Assuntos
Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/fisiologia , Transtornos Somatoformes/fisiopatologia , Animais , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Previsões , Gânglios Espinais/fisiopatologia , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nervos Periféricos/fisiopatologia , Testes Farmacogenômicos , Domínios Proteicos , Células Receptoras Sensoriais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/química , Canais de Sódio/genética , Transtornos Somatoformes/tratamento farmacológico , Transtornos Somatoformes/genética , Relação Estrutura-Atividade
18.
Biomed Pharmacother ; 109: 876-885, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551541

RESUMO

The present study was undertaken to determine the involvement of voltage-gated Na+ channel (VGSC) and other mechanism related to insulin secretion in polysaccharides from Portulaca oleracea L. (POP)-induced secretion of insulin from insulin-secreting ß-cell line cells (INS-1) cells. Our results showed that the concentration of insulin both in culture medium and inside INS-1 cells were increased under the existing of different concentration of glucose by POP or TTX, respectively. However, the effect POP on insulin secretion and production were blocked by TTX, a VGSC blocker. Meanwhile, POP improved the mitochondrial membrane potential (Δψm), increased adenosine triphosphate (ATP) production, depolarized cell membrane potential (MP) and increased intracellular Ca2+ levels ([Ca2+]i). Furthermore, POP treatment increased the expression level of Nav1.3 and decreased the expression level of Nav1.7. TTX treatment decreased the expression level of Nav1.3 and Nav1.7. On the other hand, POP also elevated the survival of INS-1 cells. These results suggested that POP induced-secretion/production of insulin in INS-1 cells were mediated by VGSC through its change of function and subunits expression and subsequent VGSC- dependent events such as change of intracellular Ca2+ releasing, ATP metabolism, cell membrane and mitochondrial membrane potential, and also improvement of INS-1 cell survival. Meanwhile, our data indicated the potentiality of developing POP to be a drug for diabetes treatment and VGSC as a therapeutic target in diabetes treatment is valuable to be investigated further.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Portulaca , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Secretoras de Insulina/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Extratos Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Bloqueadores dos Canais de Sódio/isolamento & purificação , Bloqueadores dos Canais de Sódio/farmacologia
19.
Toxicol Sci ; 167(2): 573-580, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365015

RESUMO

Calcium channel blockers (CCBs), such as diltiazem, nifedipine, and verapamil, cause tachycardia effects on several commercially available human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), when tested in culture media provided by suppliers, rather than bradycardia effects, as seen in vivo. We found that in test conditions where Na+ current of hiPSC-CMs was reduced to certain threshold by either specific Na+ channel blocker tetrodotoxin (TTX), or by voltage-dependent inactivation using elevated extracellular potassium concentrations, CCBs produced bradycardia effects on hiPSC-CMs. However, elevated extracellular potassium concentrations or the presence of TTX did not change other pharmacological responses of hiPSC-CMs, including CCBs' effects on contraction intensity and duration; beating rate change by calcium channel opener FPL64176, HCN blocker ivabradine, and ß-adrenergic agonist isoproterenol; and action potential duration prolongation by hERG channel blocker dofetilide. We concluded that action potentials of hiPSC-CMs, with regards to the CCB phenotype, were Na+ current driven. When Na+ channel availability was reduced to a critical level, their action potentials became Ca2+ current driven, and their responses to CCBs correlated well to those seen in vivo. Importantly, the corrected bradycardia effect of calcium channel block with our defined conditions will provide more reliable results in cardiac safety readouts of test compounds that integrate multiple effects including calcium channel inhibition.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Frequência Cardíaca/efeitos dos fármacos , Humanos , Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
20.
Prostate ; 79(1): 62-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242862

RESUMO

BACKGROUND: Voltage-gated sodium channels (VGSCs) are involved in several cellular processes related to cancer cell growth and metastasis, including adhesion, proliferation, apoptosis, migration, and invasion. We here in investigated the effects of S0154 and S0161, two novel synthetic sodium channel blockers (SCBs), on human prostate cancer cells (PC3, DU145, and LnCaP) and a prostate cancer xenograft model. METHODS: The MTT assay was used to assess the anticancer effects of SCBs in PC3, DU145, and LnCaP cells. Sodium indicator and glucose uptake assays were used to determine the effects of S0154 and S0161 in PC3 cells. The impact of these SCBs on the proliferation, cell cycle, apoptosis, migration, and invasion of PC3 cells were determined using a CFDA-SE cell proliferation assay, cell cycle assay, annexin V-FITC apoptosis assay, transwell cell invasion assay, and wound-healing assay, respectively. The protein expression levels of Nav1.6, Nav1.7, CDK1, cyclin B1, MMP2, MMP9 in PC3 cells were analysis by Western blotting. The in vivo anticancer activity was evaluated using a PC3 xenograft model in nude mice. RESULTS: S0154 and S0161 both showed anticancer and anti-metastatic effects against prostate cancer cells and significantly inhibited cell viability, with IC50 values in the range of 10.51-26.60 µmol/L (S0154) and 5.07-11.92 µmol/L (S0161). Both compounds also increased the intracellular level of sodium, inhibited the protein expression of two α subunits of VGSCs (Nav1.6 and Nav1.7), and caused G2/M phase cell cycle arrest, with no or minor effects on cell apoptosis. Concentrations of 5 and 10 µmol/L of S0154 and S0161 significantly decreased the glucose uptake of PC3 cells. The compounds also inhibited the proliferation of PC3 cells and decreased their invasion in transwell assays. Furthermore, S0161 exerted antitumor activity in an in vivo PC3 xenograft model in nude mice, inhibiting the growth of the tumors by about 51% compared to the control group. CONCLUSIONS: These results suggest that S0154 and S0161 have anticancer and anti-metastasis effects in prostate cancer cells both in vitro and in vivo, supporting their further development as potential therapeutic agents for prostate cancer.


Assuntos
Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Bloqueadores dos Canais de Sódio/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/patologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA