Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522271

RESUMO

Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 µM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 µM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 µM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 µM Se increased Sb content in roots by 42.57%, and 1 µM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 µM Se under SbIII and 2 µM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.


Assuntos
Boehmeria , Selênio , Antioxidantes/farmacologia , Antimônio , Selênio/farmacologia , Boehmeria/fisiologia , Raízes de Plantas/química
2.
J Environ Radioact ; 184-185: 152-157, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29395432

RESUMO

The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 µg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 µg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 µg/g while Xiangzhu No. 7's shoots could reach 20 µg/g only when the uranium treatment concentrations were 275 µg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 µg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated.


Assuntos
Biodegradação Ambiental , Boehmeria/fisiologia , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Boehmeria/química , China , Poluentes Radioativos do Solo/análise , Urânio/análise
3.
Environ Sci Pollut Res Int ; 22(13): 9999-10008, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25666476

RESUMO

Hydroponic experiments were performed to investigate the ameliorating effects and mitigation mechanisms of selenium and silicon on Cd toxicity in Boehmeria nivea (L.) Gaud. Metal accumulation, chlorophyll content, activities of antioxidant enzymes, and antioxidant contents in ramie were evaluated. The results revealed that cadmium was mainly accumulated in the roots of plants rather than in the aerial parts. Additionally, under 5 mg L(-1) Cd stress, both Se (1 µmol L(-1)) and Si (1 mmol L(-1)) treatments decreased the Cd concentrations in plants. Besides, the treatments also inhibited the translocation ability of Cd from roots to the aboveground parts, which might be related to the decline of generation of reactive oxygen species (ROS). The application of Se and/or Si ameliorated Cd toxicity via stimulating the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX), which resulted in the significant decrease of the contents of malondialdialdehyde (MDA) and hydrogen peroxide (H2O2) in ramie leaves. In addition, the content of nonenzymatic antioxidant such as glutathione (GSH) was increased significantly through the addition of selenite and silicate. Also, ascorbate (AsA) and vitamin E played a crucial role in scavenging excess ROS within plants. On the whole, appropriate doses of Se and Si were found to benefit plant growth and enhance the ability of ramie to alleviate Cd-induced stress. Moerover, the effects of combination of Se and Si appeared to be more superior compared to addition separately in response to Cd stress.


Assuntos
Boehmeria/fisiologia , Cádmio/toxicidade , Selênio/química , Silício/química , Poluentes do Solo/toxicidade , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo/efeitos da radiação , Peroxidase , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA