Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 245: 112155, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449858

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Indian medicine has utilized Aeglemarmelos (L.) Corr. commonly called as bael in several indigenous systems against various diseases. Bioactive components isolated from various plant parts of A. marmelos were used in ethno-medicine. More precisely they are known for its antiviral property against various human and animal viruses. AIM OF THE STUDY: The study was conducted to investigate the antiviral activity of A.marmelos against Bombyx mori nucleopolyhedrovirus (BmNPV). MATERIALS AND METHODS: Among the various crude extracts tested, hexane extracts of leaves of A. marmelos with promising anti-BmNPV activity was subjected to bioactivity guided fractionation based on column chromatography. Out of 40 fractions obtained from the fractionation, fractions showing similar TLC profiles were pooled into 14 fractions. A fraction with potential activity was used to purify a molecule with anti-BmNPV activity. This molecule was characterized through structural and functional analyses. RESULTS: The functionally and structurally characterized molecule in the fraction with prospective anti-BmNPV activity revealed a single crystal compound 'seselin' (8, 8-dimethyl pyrido oxazine-2-one). CONCLUSION: It is therefore understood that this seselin compound could be used as a natural medicine for the management of NPV infection in the silkworm larvae under commercial conditions after suitable field evaluations.


Assuntos
Aegle , Antivirais/uso terapêutico , Bombyx/efeitos dos fármacos , Cumarínicos/uso terapêutico , Larva/efeitos dos fármacos , Animais , Antivirais/farmacologia , Bombyx/virologia , Cumarínicos/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Hemócitos/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Larva/virologia , Simulação de Acoplamento Molecular , Nucleopoliedrovírus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta
2.
J Biomol Struct Dyn ; 37(14): 3607-3615, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198390

RESUMO

The viral cathepsin from Bombyx mori Nuclear Polyhedrosis Virus (BmNPV-Cath) is a broad-spectrum protease that participates in the horizontal transmission of this virus in silkworm by facilitating solubilization of the integument of infected caterpillars. When a B. mori farm is attacked by BmNPV, there are significant sericultural losses because no drugs or therapies are available. In this work, the structure of viral cathepsin BmNPV-Cath was used as a target for virtual screening simulations, aiming to identify potential molecules that could be used to treat the infection. Virtual screening of the Natural Products library from the Zinc Database selected four molecules. Theoretical calculations of ΔGbinding by the molecular mechanics Poisson-Boltzmann surface analysis (MM-PBSA) method indicated that the molecule Zinc12888007 (Bm5) would have high affinity for the enzyme. The in vivo infection models of B. mori caterpillars with BmNPV showed that treatment with a dose of 100 µg Bm5 dissolved in Pluronic-F127 0.02% was able to reduce the mortality of caterpillars in 22.6%, however, it did not impede the liquefaction of dead bodies. Our results suggest a role of BmNPV-Cath in generating a pool of amino acids necessary for viral replication and indicate a mechanism to be exploited in the search for treatments for grasserie disease of the silkworm.


Assuntos
Bombyx/virologia , Catepsinas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleopoliedrovírus/enzimologia , Proteínas Virais/química , Animais , Avaliação Pré-Clínica de Medicamentos , Larva/virologia , Ligantes , Estrutura Terciária de Proteína , Pupa/virologia , Análise de Sobrevida
3.
Appl Microbiol Biotechnol ; 98(16): 6973-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24728600

RESUMO

Antimicrobial peptides (AMPs), both synthetic and from natural sources, have raised interest recently as potential alternatives to antibiotics. Cyto-insectotoxin (Cit1a) is a 69-amino-acid antimicrobial peptide isolated from the venom of the central Asian spider Lachesana tarabaevi. The synthetic gene Cit1a fused with the enhanced green fluorescent protein (EGFP) gene was expressed as the EGFP-Cit1a fusion protein using a cysteine protease-deleted Bombyx mori nucleopolyhedrovirus (BmNPV-CP(-)) bacmid in silkworm larva and pupa. The antimicrobial effect of the purified protein was assayed using disk diffusion and broth microdilution methods. The minimum inhibitory concentration of EGFP-Cit1a was also measured against several bacterial strains and showed similar antimicrobial activity to that of the synthetic Cit1a reported earlier. The EGFP-Cit1a fusion protein showed antibiotic activity toward gram-positive and gram-negative bacteria at the micromolar concentration level. These results show that active Cit1a can be produced and purified in silkworm, although this peptide is insecticidal. This study demonstrates the potential of active Cit1a purified from silkworms to use as an antimicrobial agent.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aracnídeos/enzimologia , Bactérias/efeitos dos fármacos , Venenos de Aranha/química , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Aracnídeos/genética , Baculoviridae/genética , Bombyx/virologia , Clonagem Molecular , Expressão Gênica , Vetores Genéticos , Larva/virologia , Testes de Sensibilidade Microbiana , Pupa/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
5.
J Gen Virol ; 89(Pt 1): 188-194, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18089742

RESUMO

Ganciclovir, foscarnet, vidarabine and ribavirin, which are used to treat viral infections in humans, inhibited the proliferation of a baculovirus (Bombyx mori nucleopolyhedrovirus) in BmN4 cells, a cultured silkworm cell line. These antiviral agents inhibited the proliferation of baculovirus in silkworm body fluid and had therapeutic effects. Using the silkworm infection model, the antiviral activity of Kampo medicines was screened and it was found that cinnamon bark, a component of the traditional Japanese medicine Mao-to, had a therapeutic effect. Based on the therapeutic activity, the antiviral substance was purified. Nuclear magnetic resonance analysis of the purified fraction revealed that the antiviral activity was due to cinnzeylanine, which has previously been isolated from Cinnamomum zeylanicum. Cinnzeylanine inhibits the proliferation of herpes simplex virus type 1 in Vero cells. These results suggest that the silkworm-baculovirus infection model is useful for screening antiviral agents that are effective for treating humans infected with DNA viruses.


Assuntos
Antivirais/uso terapêutico , Baculoviridae/efeitos dos fármacos , Baculoviridae/crescimento & desenvolvimento , Bombyx/virologia , Extratos Vegetais/uso terapêutico , Animais , Baculoviridae/isolamento & purificação , Cinnamomum zeylanicum , Feminino , Humanos , Japão , Óvulo/virologia , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA