Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(7): 390, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699786

RESUMO

Strain WGZ8T was isolated from a soil sample of Puerh tea garden in Pu'er city, Southwest China. The isolate was rod-shaped, Gram-stain negative, facultative anaerobic, non-motile. Growth occurred within 0-3.0% (w/v) NaCl (optimal concentration, 0-1.0%), pH 5.0-11.0 (optimal pH, 7.0) and 10-40 °C (optimal temperature, 28 °C). 16S rRNA gene sequence-based phylogenetic and phylogenomic analysis revealed that WGZ8T belonged to the genus Microvirga. Its major cellular fatty acids were C19:0 cyclo ω8c, C16:0, C18:1ω7c and/or C18:1ω6c. The profile of polar lipids included phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and phosphatidylglycerol. The only respiratory quinone was detected as ubiquinone 10 (Q-10). The genome size of strain WGZ8T was 5.17 MB, and the content of DNA G + C was 61 mol%. Based on the results of digital DNA-DNA hybridization and phenotypic results, strain WGZ8T could be concluded as a novel species of the genus Microvirga, for which the name Microvirga puerhi sp. nov. is proposed. The type strain is WGZ8T (= CGMCC 1.19171 T = JCM 35317 T).


Assuntos
Bradyrhizobiaceae , Methylobacteriaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobiaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Chá
2.
Huan Jing Ke Xue ; 33(6): 2068-74, 2012 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-22946197

RESUMO

Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.


Assuntos
Bradyrhizobiaceae/genética , Genes Bacterianos/genética , Nitrogênio/metabolismo , Petróleo , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , Bradyrhizobiaceae/metabolismo , Desnitrificação , Ecossistema , Nitrificação , Nitrobacter/genética , Nitrobacter/metabolismo , Ciclo do Nitrogênio
3.
Syst Appl Microbiol ; 35(4): 205-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22444281

RESUMO

Gram-negative, rod-shaped bacteria were isolated from Robinia pseudoacacia root nodules. On the basis of the 16S rRNA gene phylogeny, they are closely related to Bradyrhizobium, Rhodopseudomonas and Nitrobacter species (97% sequence similarity), belonging to the class Alphaproteobacteria and family Bradyrhizobiaceae. The results of physiological and biochemical tests together with sequence analysis of housekeeping genes (atpD, dnaK, gyrB, recA and rpoB) allowed differentiation of this group from other validly published Bradyrhizobiaceae genera. NodA, nodC and nifH genes could not be amplified. On the basis of genotypic and phenotypic data, these organisms represent a novel genus and species for which the name Tardiphaga robiniae gen. nov., sp. nov. (LMG 26467(T)=CCUG 61473(T)), is proposed.


Assuntos
Bradyrhizobiaceae/classificação , Bradyrhizobiaceae/isolamento & purificação , Robinia/microbiologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Bélgica , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Anal Biochem ; 190(2): 348-53, 1990 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-2291478

RESUMO

A small-scale method has been adapted from an established procedure for the generation of [U-14C]acetylene from inexpensive and commonly available precursors. The method involves the fusing of Ba14CO3 with excess barium metal to produce Ba14C2. The BaC2 is reacted with water to generate acetylene which is then selectively dissolved into dimethyl sulfoxide (DMSO). The results presented demonstrate the effect of Ba:BaCO3 ratio on the concentrations of various gases released during the hydrolysis reaction and quantify the selectivity of the DMSO-trapping process for each gas. [U-14C]Acetylene generated by this method has been used to inactivate ammonia monooxygenase in three species of autotrophic nitrifying bacteria: Nitrosomonas europaea, Nitrosococcus oceanus, and Nitrosolobus multiformis. Our results demonstrate that acetylene inactivation of this enzyme in all three species results in the covalent incorporation of radioactive label into a polypeptide of apparent Mr of 25,000-27,000, as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography.


Assuntos
Acetileno/metabolismo , Bário/metabolismo , Bradyrhizobiaceae/enzimologia , Carbonatos , Oxirredutases/metabolismo , Peso Molecular , Urânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA