Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Int J Med Sci ; 21(4): 593-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464834

RESUMO

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Assuntos
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água , Acetonitrilas , Anti-Inflamatórios
2.
Food Chem ; 445: 138644, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354638

RESUMO

Vegetables are frequently processed before consumption. However, vegetable functionalization continues beyond ingestion as the human digestive tract exposes vegetable products to various conditions (e.g. elevated temperature, pH alterations, enzymes, electrolytes, mechanical disintegration) which can affect the stability of micronutrients and phytochemicals. Besides the extent to which these compounds withstand the challenges posed by digestive conditions, it is equally important to consider their accessibility for potential absorption by the body. Therefore, this study investigated the impact of static in vitro digestion on the stability (i.e. concentration) and bioaccessibility of vitamin C, vitamin K1, glucosinolates, S-alk(en)yl-l-cysteine sulfoxides (ACSOs) and carotenoids in Brussels sprouts (Brassica oleracea var. gemmifera) and leek (Allium ampeloprasum var. porrum). Water-soluble compounds, glucosinolates and ACSOs, remained stable during digestion while vitamin C decreased by >48%. However, all water-soluble compounds were completely bioaccessible. Lipid-soluble compounds were also stable during digestion but were only bioaccessible for 26-81%.


Assuntos
Brassica , Cebolas , Humanos , Cebolas/química , Micronutrientes , Glucosinolatos/análise , Brassica/química , Verduras , Ácido Ascórbico , Vitaminas , Digestão , Água , Compostos Fitoquímicos
3.
Molecules ; 29(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276596

RESUMO

The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.


Assuntos
Antineoplásicos , Brassica , Brassica/química , Isotiocianatos/farmacologia , Isotiocianatos/química , Extratos Vegetais/química , Linhagem Celular , Sulfóxidos , Glucosinolatos/metabolismo
4.
J Sci Food Agric ; 104(3): 1234-1243, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782303

RESUMO

The ability of brassicas to accumulate selenium is crucial for their positive effects on health. Selenium improves the immune system and the antioxidant defenses. Selenium biofortification of brassicas has therefore been explored to increase dietary selenium intake in humans. However, the effects of selenium biofortification on bioactive compounds, mainly phenolic compounds, are not clear. So, this systematic review and meta-analysis aimed to answer the question 'What are effects of the biofortification of brassicas with selenium on total phenolic compounds?' Ten studies, which assessed the effect of selenium biofortification on total phenolic compounds, were selected for qualitative synthesis and four studies were included in the meta-analysis after a thorough literature review of the PubMed, Science Direct, and Web of Knowledge databases. The quality of the evidence ranged from high to moderate. The meta-analysis results indicated that the total phenolic compound content was significantly higher (P = 0.002) in the supplemented group but the results showed considerable heterogeneity (P < 0.00001, I2 = 97%) between studies. This systematic review and meta-analysis summarizes the effect of Se biofortification on the increase in the content of total phenolic compounds and it suggests that several factors can affect this relationship. © 2023 Society of Chemical Industry.


Assuntos
Brassica , Selênio , Humanos , Antioxidantes , Biofortificação/métodos , Brassica/química , Fenóis/análise , Selênio/análise
5.
Fitoterapia ; 172: 105715, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907131

RESUMO

Brassica oleracea L. (BO) is an important vegetable with proven health benefits. This study aimed to elucidate the constituents of BO leaf extract (BOE) and evaluate its effect on myocardial injury. For this purpose, the constituents of BOE were identified using ultra-high performance liquid chromatography with quadrupole time-of- flight mass spectrometry, and 26 compounds were determined, including glucosinolates, sulfur compounds, alkaloids, phenolic acids, flavones, and two other kinds of compounds. The effects of BOE on myocardial cells were evaluated using isoproterenol (ISO)-treated H9C2 cells and Wistar rats, and the results revealed that BOE could inhibit cardiomyocyte hypertrophy and reduce the levels of B-type natriuretic peptide, nitric oxide, reactive oxygen species, lactic acid, and pyruvic acid. Meanwhile, BOE could increase the levels of mitochondrial membrane potential. Moreover, BOE could reduce the levels of apoptosis- and glycolysis-related proteins. Taken together, our data demonstrated that BOE treatment could alleviate ISO-induced myocardial cell injury by downregulating apoptosis and glycolysis signals.


Assuntos
Brassica , Extratos Vegetais , Ratos , Animais , Isoproterenol , Ratos Wistar , Estrutura Molecular , Extratos Vegetais/farmacologia , Brassica/química
6.
Food Res Int ; 175: 113764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129057

RESUMO

Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables. Therefore, this work studied the impact of pretreatment (relatively intact versus pureed vegetable systems), pasteurization and subsequent refrigerated storage (kinetic evaluation) on multiple health-related compounds (vitamin C, vitamin K1, carotenoids, glucosinolates and S-alk(en)yl-L-cysteine sulfoxides (ACSOs)) in Brussels sprouts and leek. It could be shown that differences introduced by different types of pretreatment were not nullified during pasteurization and refrigerated storage. Clearly, enzymatic conversions controlled during pretreatment resulted in different health-related compound profiles still observable after pasteurization. Moreover, about -42% and -100% relative concentration differences of ACSOs and dehydroascorbic acid, respectively, were detected immediately after pasteurization, while glucosinolates concentrations decreased by about 47% during refrigerated storage. All other compounds were stable during pasteurization and refrigerated storage.


Assuntos
Brassica , Cebolas , Glucosinolatos , Brassica/química , Ácido Ascórbico/análise , Pasteurização , Verduras
7.
Food Res Int ; 169: 112864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254313

RESUMO

Processing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents. Volatile profiles were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry. For both vegetables, it was observed that different pretreatments prior to a pasteurization step led to diverse volatile profiles. The differences in volatile profiles observed in the different samples were presumably attributed to the different degrees of enzymatic conversions, further conversions of enzymatically formed products and thermally induced reactivities. Interestingly, the observed initial relative differences between volatile profiles of differently pretreated pasteurized samples were still observed after a refrigerated storage of 4 weeks at 4 °C. In conclusion, refrigerated storage only limitedly affected the resulting volatile profile.


Assuntos
Brassica , Cebolas , Brassica/química , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pasteurização
8.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903308

RESUMO

Due to problems with selenium deficiency in humans, the search for new organic molecules containing this element in plant biofortification process is highly required. Selenium organic esters evaluated in this study (E-NS-4, E-NS-17, E-NS-71, EDA-11, and EDA-117) are based mostly on benzoselenoate scaffolds, with some additional halogen atoms and various functional groups in the aliphatic side chain of different length, while one compound contains a phenylpiperazine moiety (WA-4b). In our previous study, the biofortification of kale sprouts with organoselenium compounds (at the concentrations of 15 mg/L in the culture fluid) strongly enhanced the synthesis of glucosinolates and isothiocyanates. Thus, the study aimed to discover the relationships between molecular characteristics of the organoselenium compounds used and the amount of sulfur phytochemicals in kale sprouts. The statistical partial least square model with eigenvalues equaled 3.98 and 1.03 for the first and second latent components, respectively, which explained 83.5% of variance in the predictive parameters, and 78.6% of response parameter variance was applied to reveal the existence of the correlation structure between molecular descriptors of selenium compounds as predictive parameters and biochemical features of studied sprouts as response parameters (correlation coefficients for parameters in PLS model in the range-0.521 ÷ 1.000). This study supported the conclusion that future biofortifiers composed of organic compounds should simultaneously contain nitryl groups, which may facilitate the production of plant-based sulfur compounds, as well as organoselenium moieties, which may influence the production of low molecular weight selenium metabolites. In the case of the new chemical compounds, environmental aspects should also be evaluated.


Assuntos
Brassica , Compostos Organosselênicos , Compostos de Selênio , Selênio , Humanos , Selênio/metabolismo , Brassica/química , Compostos de Enxofre/metabolismo
9.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838827

RESUMO

Brassicaceae are rich in healthy phytochemicals that have a positive impact on human health. The aim of this study was to analyze the phenolic compounds and antioxidant and anticancer potential of traditional Croatian kale (Brassica oleracea L. var. acephala DC.) and wild cabbage (Brassica incana Ten.) extracts. The phenolic groups and antioxidant activity were determined by spectrophotometry, selected phenolic compounds (ferulic acid, sinapic acid, salicylic acid, kaempferol, and quercetin) were analyzed by LC-MS/MS, and anticancer potential was evaluated in vitro using HeLa cells. The extracts of both plant species are rich in phenolic compounds and showed significant antioxidant activity at similar levels. LC-MS/MS detected sinapic acid as the most abundant phenolic acid, followed by ferulic acid, while salicylic acid was present at lower concentrations. A comparative analysis showed that wild cabbage contained significantly more sinapic acid, while kale contained more kaempferol and quercetin. Both Brassica extracts at a concentration of 50 µg mL-1 showed an antiproliferative effect on HeLa cells, while they did not affect the proliferation of normal human skin fibroblasts. Wild cabbage extract also showed an antiproliferative effect on HeLa cells at a lower applied concentration of 10 µg mL-1 of extracts. The clonogenic analysis also revealed the inhibitory effect of the extracts on HeLa colony growth.


Assuntos
Antioxidantes , Brassica , Humanos , Antioxidantes/farmacologia , Brassica/química , Quempferóis/análise , Quercetina/análise , Cromatografia Líquida , Células HeLa , Espectrometria de Massas em Tandem , Fenóis/análise , Extratos Vegetais/química
10.
Food Chem ; 413: 135610, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774840

RESUMO

Alliaceous and cruciferous vegetables are rich in bioactive organosulfur compounds, including polysulfides, which exhibit a broad spectrum of potential health benefits. Here, we developed novel, accurate, and reproducible methods to quantify the total polysulfide content (TPsC) and the reactive polysulfide content (RPsC) using liquid chromatography-electrospray ionization-tandem mass spectrometry, and analyzed the reactive polysulfide profiles of 22 types of fresh vegetables, including onions, garlic, and broccoli. Quantitative analyses revealed that onions contained the largest amounts of polysulfides, followed by broccoli, Chinese chive, and garlic. A strong positive correlation was observed between the TPsC and RPsC, whereas only a moderate positive correlation was found between the total sulfur content and TPsC. These results suggest that reactive polysulfide profiling can be a novel criterion for evaluating the beneficial functions of vegetables and their derivatives, which may lead to an understanding of the detailed mechanisms underlying their bioactivities.


Assuntos
Brassica , Alho , Verduras/química , Sulfetos/análise , Cebolas/química , Alho/química , Brassica/química , Antioxidantes/análise
11.
Food Res Int ; 163: 112229, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596157

RESUMO

Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is a candidate of selenium (Se) accumulator, but it is not clear whether and how preharvest Se treatment affects its quality after harvest. Here, we showed that preharvest application of 100 µmol/L selenite to roots enhanced storage quality of Chinese flowering cabbage. It increased antioxidant capacity and reduced weight loss, leaf yellowing, and protein degradation after harvest. Furthermore, it increased the activities of antioxidant enzymes such as POD, CAT, GSH-Px, and GR, as well as contents of AsA, GSH, phenolics, and flavonoids during storage. Metabolome analysis revealed that phenolic acids including p-Coumaric acid, caffeic acid, and ferulic acid; flavonoids such as naringenin, eriodictyol, apigenin, quercetin, kaempferol, and their derivatives were notably increased by preharvest selenite treatment. Consistently, the total antioxidant capacity, evaluated by DPPH, ABTS, and FRAP methods, were all markedly enhanced in selenite-treated cabbage compared to the control. Transcriptomics analysis showed that the DEGs induced by selenite were significantly enriched in AsA-GSH metabolisms and phenylpropanoids biosynthesis pathways. Moreover, preharvest selenite treatment significantly up-regulated the expressions of BrGST, BrGSH-Px, BrAPX, BrASO, BrC4H, BrCOMT, BrCHS, and BrFLS during storage. These results suggest that preharvest selenite treatment enhanced quality of cabbage not only by increasing Se biological accumulation, but also through regulating AsA-GSH cycle and increasing phenolics and flavonoids synthesis after harvest. This study provides a novel insight into the effects of preharvest Se treatment on quality of Chinese flowering cabbage during storage.


Assuntos
Brassica , Selênio , Antioxidantes/metabolismo , Brassica/química , Flavonoides/metabolismo , Glutationa/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo
12.
Metab Brain Dis ; 38(4): 1323-1334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36701015

RESUMO

Brain damage caused by the metal accumulation may result in the permanent injuries including severe neurological disorders. Thus, the aim of this study was to determine the medicinal efficacy of broccoli extract in arsenic-induced brain poisoning. Twenty-eight female rats were classified into 4 groups; control, receiving sodium arsenate (As), As + broccoli extract (As + Bc), and (Bc). Then, the Elevated Plus-Maze and pathological-biochemical assessment of the brain tissue were performed. Moreover, the GC-MS was used to explore the quantity and quality of broccoli extract. The catalase had a significant decrease in the As group compared to that of the control group; As + Bc and Bc groups also showed a significant increase compared to that of the As group. Glutathione peroxidase was the lowest in the As group (1.84 ± 0.97) and the highest in the Bc group (5.51 ± 2.31). The Treatment significantly reduced pro-inflammatory cytokines in the As + Bc group. In addition, in terms of behavioral changes, the duration of presence in the open arm was reduced in the As group compared to that of the control group. Besides, the open arm duration increased significantly in the Bc group. Interestingly, there was a significant increase in estrogen and gonadotropin hormones in the Bc group compared to the other groups. Pathological findings showed that the condition of cortical neurons was improved and the surrounding space was reduced in As + Bc compared to that of the As group. In addition, more than 30% of the extract's compounds are made up Phytol,1-isothiocyanate-4-[methylsulfinyl] butane, and γ-Sitosterol. Thereby, the broccoli extract with active substances was highly effective in enhancing the behavioral and pathological parameters switch in rats with arsenic-induced poisoned brains.


Assuntos
Arsênio , Brassica , Ratos , Feminino , Animais , Brassica/química , Estresse Oxidativo , Encéfalo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Front Biosci (Landmark Ed) ; 28(12): 345, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179748

RESUMO

BACKGROUND: Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most popular vegetables in China because of its taste and health benefits. The area of production has obvious effects on the quality of Chinese cabbage. However, metabolite profiling and variations in different production areas are still unclear. METHODS: Here, widely targeted metabolite analyses based on the ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach were performed to study the metabolite profiling of Chinese cabbage planted in the Jiaozhou and Jinan areas. RESULTS: A total of 531 metabolites were detected, of which 529 were present in the Chinese cabbage from both areas, 108 were found to be chemicals related to Chinese traditional medicine, and 79 were found to correspond to at least one disease. Chinese cabbage is rich in nutritious substances such as lipids, phenolic acids, amino acids and derivatives, nucleotides and derivatives, organic acids, flavonoids, glucosinolates, saccharides, alcohols, and vitamins. Comparative analysis showed that the metabolic profiles differed between areas, and 89 differentially altered metabolites (DAMs) were characterized. Of these, 78 DAMs showed higher levels in Jinan Chinese cabbage, whereas 11 had higher levels in Jiaozhou Chinese cabbage. Two metabolites, S-(Methyl)glutathione and nicotinic acid adenine dinucleotide, were unique in Jiaozhou Chinese cabbage. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DAMs were enriched into 23 pathways, of which tryptophan metabolism and thiamine metabolism were the significant enrichment pathways. CONCLUSIONS: This study provides new insights into the metabolite profiles and production areas affecting the metabolite variations of Chinese cabbage, which will be useful for functional Chinese cabbage cultivation.


Assuntos
Brassica rapa , Brassica , Brassica rapa/genética , Brassica rapa/metabolismo , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Brassica/química , Brassica/genética , Regulação da Expressão Gênica de Plantas
14.
J Cosmet Dermatol ; 21(12): 7153-7162, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36204972

RESUMO

BACKGROUND: Plant extracts with rich ascorbic acid contents have greater antioxidant capability; extensively employed in skin beautifying products and protect skin from detrimental photodamaging environmental effects. Brassica oleraceae is having a substantial prospective toward cosmeceuticals owed by its profound activity against oxidation. AIM: To develop an effective topical ethosomal gel loaded with Brassica oleraceae leaves extract with significant antioxidant activity. METHODOLOGY: Valuation of antioxidant capability of plant leaves extract by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and quantification of ascorbic acid was done through high performance liquid chromatography (HPLC). Ethosomes were prepared by cold method. Optimized suspension containing extract was incorporated in 2% Carbopol gel (test) along with extract solution (control). Noninvasive in vivo studies were performed for final product to assess its effects on skin by measuring melanin and erythema, sebum level, elasticity, moistness level, facial pores count and their area, skin wrinkling, and smoothness. RESULTS: Brassica oleraceae (red cabbage) leaves extract exhibited significant antioxidant potential (85.64 ± 1.28%) with 14.22 µg/g of ascorbic acid; expressed prominent cosmetic effects in terms of skin melanin, erythema, sebum, elasticity, hydration, facial pores, wrinkles, and smoothness when incorporated in ethosomes. ANOVA test also exhibited positive significant (p ≤ 0.05) effects on skin. CONCLUSION: Brassica oleraceae extract is a strong antioxidant with remarkable dermocosmetic benefits for skin.


Assuntos
Brassica , Humanos , Brassica/química , Antioxidantes , Melaninas , Estudos Prospectivos , Pele/química , Ácido Ascórbico , Extratos Vegetais , Eritema
15.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144744

RESUMO

Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.


Assuntos
Anti-Infecciosos , Brassica , COVID-19 , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Brassica/química , Etnofarmacologia , Glucosinolatos , Humanos , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Fitoterapia , Extratos Vegetais/química , Sementes
16.
Int J Biol Macromol ; 211: 390-399, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35580745

RESUMO

Novel multifunctional wound dressing with the ability to protect, cure and sense the healing process, was developed. Red-cabbage extract has been reported to exhibit bioactive compounds with the ability to function as antioxidant, antiinflammatory, anticancer, antibacterial, antifungal, and antiviral agent, as well as a natural pH-sensory chromophoric material. An anthocyanin extract was prepared from Red-cabbage (Brassica oleracea L. Var. capitata). The anthocyanins extract was encapsulated into calcium alginate in the presence of potash alum mordant, which was then applied to the surface of the cotton gauze. Red-cabbage based anthocyanin chromophoric extract was encapsulated at different concentrations into alginate-based hydrogel and immobilized into cotton gauze to provide a smart therapeutic pH-responsive wound dress to function as an antimicrobial and biochromic matrix providing a comfortable dress sensor to monitor the wound status. Decreasing the pH of a wound mimic solution caused a blue shift from 579 to 437 nm. The anthocyanin spectroscopic probe's halochromic activity demonstrated a colorimetric change from purple to pink, which was critical to the dyed cotton diagnostic assay's biochromic performance. The colorimetric parameters of the prepared dressing sensor were proved by UV-Vis absorbance and CIE Lab coordinates. Both mechanical and morphological properties of the prepared dressing were studied using different analytical methods. The effect of anthocyanin concentration on the mechanical, water vapor permeability, water absorption and morphological properties of the wound dressing were investigated. No substantial flaws in air-permeability or bend length were detected after dyeing. The colored cotton gauze samples were tested for their high colorfastness. The cytotoxicity and antimicrobial activity of the prepared biochromic cotton gauze were explored. The dyed cotton samples exhibited no cytotoxicity and improved antimicrobial activity with increasing the anthocyanin ratio on cotton surface.


Assuntos
Brassica , Nanopartículas , Alginatos , Antocianinas/química , Antocianinas/farmacologia , Bandagens , Brassica/química , Corantes , Extratos Vegetais/farmacologia
17.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628468

RESUMO

H2S has acquired great attention in plant research because it has signaling functions under physiological and stress conditions. However, the direct detection of endogenous H2S and its potential emission is still a challenge in higher plants. In order to achieve a comparative analysis of the content of H2S among different plants with agronomical and nutritional interest including pepper fruits, broccoli, ginger, and different members of the genus Allium such as garlic, leek, Welsh and purple onion, the endogenous H2S and its emission was determined using an ion-selective microelectrode and a specific gas detector, respectively. The data show that endogenous H2S content range from pmol to µmol H2S · g-1 fresh weight whereas the H2S emission of fresh-cut vegetables was only detected in the different species of the genus Allium with a maximum of 9 ppm in garlic cloves. Additionally, the activity and isozymes of the L-cysteine desulfhydrase (LCD) were analyzed, which is one of the main enzymatic sources of H2S, where the different species of the genus Allium showed the highest activities. Using non-denaturing gel electrophoresis, the data indicated the presence of up to nine different LCD isozymes from one in ginger to four in onion, leek, and broccoli. In summary, the data indicate a correlation between higher LCD activity with the endogenous H2S content and its emission in the analyzed horticultural species. Furthermore, the high content of endogenous H2S in the Allium species supports the recognized benefits for human health, which are associated with its consumption.


Assuntos
Brassica , Alho , Sulfeto de Hidrogênio , Cebolas , Zingiber officinale , Brassica/química , Cistationina gama-Liase , Alho/química , Zingiber officinale/química , Sulfeto de Hidrogênio/análise , Isoenzimas , Cebolas/química
18.
J Food Biochem ; 46(7): e14158, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348231

RESUMO

The anti-adipogenic effects of alcohol extract of Brassica oleracea (BO), Ocimum basilicum (OB), and Moringa oleifera (MO) leaves on 3T3-L1 pre-adipocyte as well as their lipase inhibitory properties were comparatively evaluated. The polyphenol-rich extracts of MO, BO, and OB leaves were profiled for major bioactive compounds using UPLC-HRMS/MS analysis. Among the three plant extracts, BO had the highest flavonoid content with stronger radical scavenging activity. All extracts exhibited lipase inhibitory activities, dose-dependently and a non-competitive type of inhibition with altered kinetic parameters was observed. In cell culture studies, these plant extracts remarkably inhibited the intracellular triglyceride accumulation in 3T3-L1 cells and the effect was in the decreasing order of BO > OB > MO. The extracts also down-regulated the key transcription factors of adipogenesis (PPARγ, C/EPB-α, PI3k, p-Akt, and FAS enzyme) as well as modulated the release profile of leptin and adiponectins. Overall, BO extract showed an exceptional inhibitory potential against both adipogenesis and lipase activities among the evaluated plants. PRACTICAL APPLICATIONS: The present study highlights the anti-adipogenic potential of three local edible plants and herbs, that is, Brassica oleracea (BO), Ocimum basilicum (OB), and Moringa oleifera (MO) leaves, using in vitro models. The results revealed that the BO extract had remarkable activity against adipogenesis in the 3T3-L1 pre-adipocyte differentiation model as well as lipase inhibitory properties. This study elucidates the prospects of natural plant-derived compounds in managing obesity-related health issues. The outcomes of this study would be useful in developing alternative or complementary therapies that are being preferred and largely sought over pharmacological treatments and procedures for controlling and treating abnormal weight gain in humans.


Assuntos
Adipócitos , Adipogenia , Brassica , Moringa oleifera , Ocimum basilicum , Extratos Vegetais , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Brassica/química , Lipase , Camundongos , Moringa oleifera/química , Ocimum basilicum/química , Extratos Vegetais/farmacologia
19.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163921

RESUMO

(-)-Epigallocatechin gallate (EGCG) and tuna oil (TO) are beneficial bioactive compounds. EGCG, TO or a combination of, delivered by broccoli by-products (BBP), were added to an in vitro anaerobic fermentation system containing human fecal inocula to examine their ability to generate short-chain fatty acids (SCFA), metabolize EGCG and change the gut microbiota population (assessed by 16 S gene sequencing). Following 24 h fermentation, EGCG was hydrolyzed to (-)-epigallocatechin and gallic acid. EGCG significantly inhibited the production of SCFA (p < 0.05). Total SCFA in facal slurries with BBP or TO-BBP (48-49 µmol/mL) were significantly higher (p < 0.05) than the negative control with cellulose (21 µmol/mL). EGCG-BBP and TO-EGCG-BBP treatment increased the relative abundance of Gluconacetobacter, Klebsiella and Trabulsiella. BBP and TO-BBP showed the greatest potential for improving gut health with the growth promotion of high butyrate producers, including Collinsella aerofaciens, Bacillus coagulans and Lactobacillus reuteri.


Assuntos
Catequina/análogos & derivados , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Óleos de Peixe/administração & dosagem , Microbioma Gastrointestinal , Fenóis/metabolismo , Extratos Vegetais/farmacologia , Animais , Brassica/química , Catequina/administração & dosagem , Quimioterapia Combinada , Fezes/microbiologia , Humanos , Técnicas In Vitro , Atum/crescimento & desenvolvimento
20.
J Sci Food Agric ; 102(10): 4210-4217, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023582

RESUMO

BACKGROUND: Broccoli, kale, and cauliflower contain phenolic compounds and glucosinolates, which have several biological effects on the body. However, because they are thermolabile, many of these substances are lost in the cooking process. Electrospinning encapsulation, using zein as a preservative wall material, can expand the applications of the compounds in the food and pharmaceutical industries. The objective of this research was to characterize broccoli, kale, and cauliflower extracts and encapsulate them with the electrospinning technique using zein. RESULTS: Broccoli, kale, and cauliflower extracts contain five phenolic compounds and three glucosinolates. Fibers from broccoli, kale, and cauliflower showed high encapsulation efficiency, good thermal stability, and nanometric size, especially those containing extract and zein in proportions of up to 35:65. CONCLUSION: Fibers from broccoli, kale, and cauliflower containing extract and zein in proportions of up to 35:65 have the potential for effective nutraceutical application for the control of non-communicable chronic diseases or application in food packaging. © 2022 Society of Chemical Industry.


Assuntos
Brassica , Zeína , Brassica/química , Glucosinolatos/análise , Material Particulado , Fenóis , Extratos Vegetais/química , Zeína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA