Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0260960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928963

RESUMO

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10-67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Assuntos
Brassica napus/fisiologia , Secas , Fertilizantes , Reguladores de Crescimento de Plantas/farmacologia , Brassica napus/química , Brassica napus/efeitos dos fármacos , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Estresse Fisiológico
2.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803724

RESUMO

Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 µM), foliar application of Se (7.06 µM), foliar application of Se + Seed priming with Se (7.06 µM and 75 µM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Secas , Selênio/administração & dosagem , Antioxidantes/análise , Brassica napus/fisiologia , Brassicaceae/fisiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Osmorregulação , Paquistão , Óleos de Plantas/isolamento & purificação , Proteínas de Plantas/análise , Óleo de Brassica napus/isolamento & purificação
3.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33057654

RESUMO

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Assuntos
Morte Celular Autofágica , Brassica napus/crescimento & desenvolvimento , Caspases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Sementes/crescimento & desenvolvimento , Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas , Sementes/fisiologia , Estresse Fisiológico
4.
PLoS One ; 15(11): e0241568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170873

RESUMO

The use of nanomaterials in agriculture is a current need and could be helpful in overcoming food security risks. Brassica napus L. is the third most important crop for edible oil, having double low unsaturated fatty acids. In the present study, we investigated the effects of green synthesized Zn NPs on biochemical effects, antioxidant enzymes, nutritional quality parameters and on the fatty acid profile of rapeseed (B. napus). Plant-mediated synthesis of zinc nanoparticles (Zn NPs) was carried out using Mentha arvensis L. leaf extract followed by characterization through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-Ray (EDX), and X-Ray diffraction (XRD). NPs exhibited irregular shapes ranging in size from 30-70 nm and EDX analysis confirmed 96.08% of Zn in the sample. The investigated biochemical characterization (protein content, proline content, total soluble sugar (TSS), total flavonoid content (TFC), and total phenolic content (TPC) showed a substantial change on exposure to Zn NPs. A dose-dependent gradual increase was observed in the antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Oil and moisture contents dropped significantly from the control level in the rapeseed (B. napus) varieties. However, different trends in nutritional (Zn, Na+, K+) and fatty acid profiling of B. napus have been noted. This study demonstrates that Zn NPs have the potential to improve the biochemical, nutritional, antioxidant enzymes, and fatty acid profile of B. napus varieties.


Assuntos
Brassica napus/efeitos dos fármacos , Fertilizantes , Química Verde/métodos , Nanopartículas Metálicas/administração & dosagem , Zinco/administração & dosagem , Brassica napus/fisiologia , Catalase/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Mentha/química , Nanopartículas Metálicas/química , Nutrientes/análise , Nutrientes/metabolismo , Peroxidase/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Zinco/química
5.
Plant J ; 104(5): 1410-1422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048384

RESUMO

Brassica napus is an important oilseed crop in the world, and the mechanism of seed oil biosynthesis in B. napus remains unclear. In order to study the mechanism of oil biosynthesis and generate germplasms for breeding, an ethyl methanesulfonate (EMS) mutant population with ~100 000 M2 lines was generated using Zhongshuang 11 as the parent line. The EMS-induced genome-wide mutations in M2-M4 plants were assessed. The average number of mutations including single nucleotide polymorphisms and insertion/deletion in M2-M4 was 21 177, 28 675 and 17 915, respectively. The effects of the mutations on gene function were predicted in M2-M4 mutants, respectively. We screened the seeds from 98 113 M2 lines, and 9415 seed oil content and fatty acid mutants were identified. We further confirmed 686 mutants with altered seed oil content and fatty acid in advanced generation (M4 seeds). Five representative M4 mutants with increased oleic acid were re-sequenced, and the potential causal variations in FAD2 and ROD1 genes were identified. This study generated and screened a large scale of B. napus EMS mutant population, and the identified mutants could provide useful genetic resources for the study of oil biosynthesis and genetic improvement of seed oil content and fatty acid composition of B. napus in the future.


Assuntos
Brassica napus/genética , Metanossulfonato de Etila/farmacologia , Mutação , Óleos de Plantas/química , Sementes/química , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/genética , Flores/efeitos dos fármacos , Flores/genética , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/genética , Sequenciamento Completo do Genoma
6.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008008

RESUMO

Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.


Assuntos
Brassica napus/genética , Produtos Agrícolas/genética , Engenharia Genética , Técnicas Genéticas , Genômica , Melhoramento Vegetal , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Resistência à Doença/genética , Genoma de Planta , Herbicidas , Doenças das Plantas/genética , Óleo de Brassica napus/análise , Óleo de Brassica napus/química , Sementes/química , Sementes/crescimento & desenvolvimento , Estresse Fisiológico
7.
Plant J ; 104(4): 932-949, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808386

RESUMO

Brassica napus is currently cultivated as an important ornamental crop in China. Flower color has attracted much attention in rapeseed genetics and breeding. Here, we characterize an orange-flowered mutant of B. napus that exhibits an altered carotenoid profile in its petals. As revealed by map-based cloning, the change in color from yellow to orange is attributed to the loss of BnaC09.ZEP (zeaxanthin epoxidase) and a 1695-bp deletion in BnaA09.ZEP. HPLC analysis, genetic complementation and CRISPR/Cas9 experiments demonstrated that BnaA09.ZEP and BnaC09.ZEP have similar functions, and the abolishment of both genes led to a substantial increase in lutein content and a sharp decline in violaxanthin content in petals but not leaves. BnaA09.ZEP and BnaC09.ZEP are predominantly expressed in floral tissues, whereas their homologs, BnaA07.ZEP and BnaC07.ZEP, mainly function in leaves, indicating redundancy and tissue-specific diversification of BnaZEP function. Transcriptome analysis in petals revealed differences in the expression of carotenoid and flavonoid biosynthesis-related genes between the mutant and its complementary lines. Flavonoid profiles in the petals of complementary lines were greatly altered compared to the mutant, indicating potential cross-talk between the regulatory networks underlying the carotenoid and flavonoid pathways. Additionally, our results indicate that there is functional compensation by BnaA07.ZEP and BnaC07.ZEP in the absence of BnaA09.ZEP and BnaC09.ZEP. Cloning and characterization of BnaZEPs provide insights into the molecular mechanisms underlying flower pigmentation in B. napus and would facilitate breeding of B. napus varieties with higher ornamental value.


Assuntos
Brassica napus/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Brassica napus/enzimologia , Brassica napus/fisiologia , Sistemas CRISPR-Cas , Flavonoides/metabolismo , Flores/enzimologia , Flores/genética , Flores/fisiologia , Inativação Gênica , Luteína/metabolismo , Oxirredutases/genética , Pigmentação/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xantofilas/metabolismo
8.
Plant Physiol Biochem ; 145: 142-152, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31689666

RESUMO

The phytotoxicity of chromium (Cr) makes it obligatory for the researchers to develop strategies that seek to hinder its accumulation in food chains. While, protective role of selenium (Se) has not been discussed in detail under adverse conditions in oilseed rape. Here, our aim was to investigate the potential use of Se (0, 5 and 10 µM) in alleviating the Cr toxicity (0, 100 and 200 µM) in Brassica napus L. Results delineated that Se-supplementation notably recovered the Cr-phytotoxicity by reducing the Cr accumulation in plant tissues and boosted the inhibition in plant growth and biomass. Under Cr stress, the exogenously applied Se significantly recovered the impairment in photosynthesis related parameters (chlorophyll a, chlorophyll b, carotenoids, net photosynthetic rate, stomatal conductance, and photochemical efficiency of photosystem II), and counteracted the reduction in nutrients uptake and improved the essential amino acids (EAAs) levels. In addition, Se activated the antioxidants enzymes included in AsA-GSH cycle (SOD, CAT, APX, GR, DHAR, MDHAR, GSH, and AsA) and glyoxalase (Gly) system (Gly I and Gly II) and minimized the excessive generation of reactive oxygen species (ROS) and methylglyoxal (MG) contents in response to Cr stress. In a nutshell, Se (more effective at 5 µM) alleviated the Cr and MG induced phytotoxicity and oxidative damages by minimizing their (Cr and MG) accumulation and enhanced the plant growth, nutrients element level, nutrition quality by improving EAAs, antioxidant and Gly system. By considering the above-mentioned biomarkers, the addition of exogenous Se in Cr polluted soils might be effective approach to decrease the Cr uptake and its linked phytotoxicity in B. napus.


Assuntos
Aminoácidos , Brassica napus , Cromo , Selênio , Aminoácidos/metabolismo , Antioxidantes , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Cromo/toxicidade , Nutrientes/metabolismo , Estresse Oxidativo , Selênio/farmacologia
9.
BMC Plant Biol ; 19(1): 507, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752690

RESUMO

BACKGROUND: The ubiquitous signaling molecule melatonin (N-acetyl-5-methoxytryptamine) (MT) plays vital roles in plant development and stress tolerance. Selenium (Se) may be phytotoxic at high concentrations. Interactions between MT and Se (IV) stress in higher plants are poorly understood. The aim of this study was to evaluate the defensive roles of exogenous MT (0 µM, 50 µM, and 100 µM) against Se (IV) (0 µM, 50 µM, 100 µM, and 200 µM) stress based on the physiological and biochemical properties, thiol biosynthesis, and antioxidant system of Brassica napus plants subjected to these treatments. RESULTS: Se (IV) stress inhibited B. napus growth and biomass accumulation, reduced pigment content, and lowered net photosynthetic rate (Pn) and PSII photochemical efficiency (Fv/Fm) in a dose-dependent manner. All of the aforementioned responses were effectively alleviated by exogenous MT treatment. Exogenous MT mitigated oxidative damage and lipid peroxidation and protected the plasma membranes from Se toxicity by reducing Se-induced reactive oxygen species (ROS) accumulation. MT also alleviated osmotic stress by restoring foliar water and sugar levels. Relative to standalone Se treatment, the combination of MT and Se upregulated the ROS-detoxifying enzymes SOD, APX, GR, and CAT, increased proline, free amino acids, and the thiol components GSH, GSSG, GSH/GSSG, NPTs, PCs, and cys and upregulated the metabolic enzymes γ-ECS, GST, and PCS. Therefore, MT application attenuates Se-induce oxidative damage in plants. MT promotes the accumulation of chelating agents in the roots, detoxifies Se there, and impedes its further translocation to the leaves. CONCLUSIONS: Exogenous MT improves the physiological traits, antioxidant system, and thiol ligand biosynthesis in B. napus subjected to Se stress primarily by enhancing Se detoxification and sequestration especially at the root level. Our results reveal better understanding of Se-phytotoxicity and Se-stress alleviation by the adequate supply of MT. The mechanisms of MT-induced plant tolerance to Se stress have potential implications in developing novel strategies for safe crop production in Se-rich soils.


Assuntos
Antioxidantes/metabolismo , Brassica napus/fisiologia , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Selênio/toxicidade , Compostos de Sulfidrila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Environ Pollut ; 254(Pt B): 113051, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450117

RESUMO

Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, "The World Capital of Selenium", and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.


Assuntos
Ascomicetos/efeitos dos fármacos , Brassica napus/microbiologia , Fungicidas Industriais/toxicidade , Selênio/análise , Selênio/toxicidade , Microbiologia do Solo , Ascomicetos/crescimento & desenvolvimento , Bactérias/classificação , Brassica napus/fisiologia , Incidência , Microbiota , Doenças das Plantas/microbiologia , RNA Ribossômico 16S , Solo
11.
Plant Cell Physiol ; 60(7): 1457-1470, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30994920

RESUMO

Heat stress during Brassica napus seed filling severely impairs yield and oil content. However, the mechanisms underlying heat-stress effects on B. napus seed photosynthesis and oil accumulation remain elusive. In this study, we showed that heat stress resulted in reduction of seed oil accumulation, whereas the seed sugar content was enhanced, which indicated that incorporation of carbohydrates into triacylglycerols was impaired. Photosynthesis and respiration rates, and the maximum quantum yield of photosystem II in developing seeds were inhibited by heat stress. Transcriptome analysis revealed that heat stress led to up-regulation of genes associated with high light response, providing evidence that photoinhibition was induced by heat stress. BnWRI1 and its downstream genes, including genes involved in de novo fatty acid biosynthesis pathway, were down-regulated by heat stress. Overexpression of BnWRI1 with a seed-specific promoter stabilized both oil accumulation and photosynthesis under the heat-stress condition, which suggested BnWRI1 plays an important role in mediating the effect of heat stress on fatty acid biosynthesis. A number of sugar transporter genes were inhibited by heat stress, resulting in defective integration of carbohydrates into triacylglycerols units. The results collectively demonstrated that disturbances of the seed photosynthesis machinery, impairment of carbohydrates incorporation into triacylglycerols and transcriptional deregulation of the BnWRI1 pathway by heat stress might be the major cause of decreased oil accumulation in the seed.


Assuntos
Brassica napus/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Óleo de Brassica napus/metabolismo , Fatores de Transcrição/metabolismo , Brassica napus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Fotossíntese/fisiologia , Proteínas de Plantas/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
12.
Environ Sci Pollut Res Int ; 26(17): 17362-17372, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012076

RESUMO

Epoxiconazole is a broad-spectrum fungicide described as highly persistent in soil and as such can be considered as an abiotic agent like other problematic agrochemicals. Furthermore, the plant phenotyping tool involving non-invasive monitoring of plant-emitted volatile organic compounds (VOCs) may be useful in the identification of metabolic markers for abiotic stress. We therefore decided to profile the VOCs from secondary metabolism of oilseed rape through a dose-response experiment under several epoxiconazole concentrations (0, 0.01, 0.1 and 1 mg L-1). VOC collections of 35-day-old whole plantlets were performed through a dynamic headspace sampling technique under defined and controlled conditions. The plantlets grew freely within a home-made, laboratory and high-throughput glass chamber without any disturbance. Putative metabolic markers were analysed using a targeted metabolomic approach based on TD-GC-MS method coupled with data acquisition in SIM mode in order to focus on terpenes and sulphur-containing volatiles. Chromatograms of emitted terpenes were achieved accurately for the 35-day-old oilseed rape plantlets. We also analysed the presence of sulphur-containing volatiles in samples of shoot and root tissues using an innovative DHS-TD-GC-MS method, but no difference was found between qualitative profiles. Nevertheless, we demonstrated through this experiment that sesquiterpenes such as ß-elemene and (E,E)-α-farnesene are involved in epoxiconazole dose-response. In particular, (E,E)-α-farnesene could serve as a metabolic marker of fungicide exposure for oilseed rape plantlets.


Assuntos
Brassica napus/fisiologia , Compostos de Epóxi/toxicidade , Poluentes do Solo/toxicidade , Terpenos/metabolismo , Triazóis/toxicidade , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Metabolômica , Extratos Vegetais/metabolismo , Sesquiterpenos , Estresse Fisiológico , Testes de Toxicidade , Compostos Orgânicos Voláteis/análise
13.
BMC Plant Biol ; 19(1): 21, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634904

RESUMO

BACKGROUND: Rapeseed (Brassica napus, B. napus) is an important oil seed crop in the world. Previous studies showed that seed germination vigor might be correlated with seed oil content in B. napus, but the regulation mechanism for seed germination has not yet been explained clearly. Dissecting the regulation mechanism of seed germination and germination vigor is necessary. RESULTS: Here, proteomic and genomic approaches were used to analyze the germination process in B. napus seeds with different oil content. The identification of 165 differentially expressed proteins (DEPs) in the germinating seeds of B. napus with high and low oil content was accomplished by two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE). The comparative proteomic results revealed that seeds with high oil content had higher metabolic activity, especially for sulfur amino acid metabolism. Thirty-one unique genes were shown to be significantly changed during germination between the seeds with high and low oil content, and thirteen of these genes were located within the confidence interval of germination-related quantitative trait locus (QTLs), which might play an important role in regulating seed germination vigor. CONCLUSIONS: The present results are of importance for the understanding of the regulation mechanism for seed germination vigor in B. napus.


Assuntos
Brassica napus/metabolismo , Brassica napus/fisiologia , Genômica/métodos , Germinação/fisiologia , Óleos de Plantas/metabolismo , Proteômica/métodos , Sementes/metabolismo , Sementes/fisiologia , Brassica napus/genética , Locos de Características Quantitativas/genética , Sementes/genética , Eletroforese em Gel Diferencial Bidimensional
14.
PLoS One ; 14(1): e0210542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633764

RESUMO

Plants contain endophytic bacteria, whose communities both influence plant growth and can be an important source of probiotics. Here we used deep sequencing of a 16S rRNA gene fragment and bacterial cultivation to independently characterize the microbiomes of five plant species from divergent taxonomic orders-potato (Solanum tuberosum), carrot (Daucus sativus), beet (Beta vulgaris), neep (Brassica napus spp. napobrassica), and topinambur (Helianthus tuberosus). We found that both species richness and diversity tend to be higher in the peel, where Alphaproteobacteria and Actinobacteria dominate, while Gammaproteobacteria and Firmicutes dominate in the pulp. A statistical analysis revealed that the main characteristic features of the microbiomes of plant species originate from the peel microbiomes. Topinambur pulp displayed an interesting characteristic feature: it contained up to 108 CFUs of lactic acid bacteria, suggesting its use as a source of probiotic bacteria. We also detected Listeria sp., in topinambur pulps, however, the 16S rRNA gene fragment is unable to distinguish between pathogenic versus non-pathogenic species, so the evaluation of this potential health risk is left to a future study.


Assuntos
Bactérias/genética , Ecossistema , Endófitos/genética , Verduras/fisiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Beta vulgaris/microbiologia , Beta vulgaris/fisiologia , Brassica napus/microbiologia , Brassica napus/fisiologia , DNA Bacteriano/genética , Daucus carota/microbiologia , Daucus carota/fisiologia , Endófitos/classificação , Endófitos/fisiologia , Helianthus/microbiologia , Helianthus/fisiologia , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Solanum tuberosum/microbiologia , Solanum tuberosum/fisiologia , Verduras/classificação , Verduras/microbiologia
15.
PLoS One ; 13(9): e0204407, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235318

RESUMO

Pollination success is important for crop yield, but may be cultivar dependent. Less is known about which floral traits influence pollination success. Floral traits, e.g. traits related to attraction and reward, can also contribute to gene flow via pollen, the latter being of particular importance in oilseed rape (Brassica napus) where gene flow occurs between plants of crop, volunteer and feral origin as well as related taxa. We investigated the relationship between pollen load size and seed set in winter oilseed rape. We compared variability in pollen-viability traits, flower production (flowers from the main raceme times number of branches) and seed number and weight per siliqua among cultivars and feral populations (growing outside of agricultural fields) under controlled conditions. Both seed number and weight were saturated at relatively low pollen loads in the tested cultivar. Pollen viability and estimated flower production differed among cultivars, indicating that these traits could contribute to yield variability. Seed weight per siliqua, but not pollen traits or flower production, was lower in ferals compared to cultivars. Thus, while the probability of establishment may be reduced in ferals (due to lower seed weight per siliqua) this will not necessarily impact their contribution to gene flow via pollen. In oilseed rape a relatively low pollen load may be sufficient for full seed set in some cultivars, suggesting less dependence on insect pollination for high yield than generally expected. Our results also showed that previously less investigated floral traits, such as pollen viability, pollen tube growth rate and flower number, can differ between cultivars. Studies of these traits may provide targets for increasing crop yield and provide general knowledge about gene flow between cultivated, feral and related wild populations.


Assuntos
Brassica napus/fisiologia , Pólen/fisiologia , Sementes/crescimento & desenvolvimento , Sobrevivência de Tecidos , Brassica napus/crescimento & desenvolvimento , Néctar de Plantas/metabolismo , Pólen/crescimento & desenvolvimento
16.
Plant Mol Biol ; 97(4-5): 325-335, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29946803

RESUMO

KEY MESSAGE: In this study, we analyzed the transcriptome and metabolite profile of the style to explore the essential metabolites and specific genes for pollen tube growth of B. napus in vivo. For sexual reproduction of flowering plants, pollen must germinate on the stigma and the pollen tube must grow through the style to deliver the sperm nuclei to the female gametophyte cells. During this process, the rapidly growing pollen tube can cover substantial distances. Despite the clear requirements for energy and cellular building blocks in this process, few studies have examined the role of metabolism in the style for pollen tube elongation. In this study, we comprehensively analyzed the transcriptome and metabolite profiles during pollen germination and pollen tube growth in the style in Brassica napus. We profiled the transcripts and metabolites stored in pollen and identified many transcripts related to metabolic pathways. Mature pollen contained low levels of nutrients, whereas the styles contained high levels of diverse nutrients. The levels of most nutrients in the style, especially metabolites for cell wall synthesis and energy metabolism, rapidly decreased at 2 h after pollination, along with pollen germination and pollen tube elongation through the style. A subset of genes involved in cell wall synthesis and nutrient transport were expressed specifically in styles at 1 h after pollination. These results demonstrated that successful fertilization involves the transcripts and nutrients stored in mature pollen, and specific gene expression and stored nutrients in the style. Therefore, these findings enhance our understanding of fertilization in B. napus.


Assuntos
Brassica napus/fisiologia , Metaboloma , Transcriptoma , Brassica napus/genética , Perfilação da Expressão Gênica , Pólen/genética , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Polinização
17.
Plant Biol (Stuttg) ; 20(5): 894-901, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29883021

RESUMO

Quartet pollen, where pollen grains remain attached to each other post-meiosis, is useful for tetrad analysis, crossover assessment and centromere mapping. We observed the quartet pollen phenotype for the first time in the agriculturally significant Brassica genus, in an experimental population of allohexaploid Brassica hybrids derived from the cross (Brassica napus × B. carinata) × B. juncea followed by two self-pollination generations. Quartet pollen production was assessed in 144 genotypes under glasshouse conditions, following which a set of 16 genotypes were selected to further investigate the effect of environment (warm: 25 °C and cold: 10 °C temperatures) on quartet pollen production in growth cabinets. Under glasshouse phenotyping conditions, only 92 out of 144 genotypes produced enough pollen to score: of these, 30 did not produce any observable quartet pollen, while 62 genotypes produced quartet pollen at varying frequencies. Quartet pollen production appeared quantitative and did not clearly fall into phenotypic or qualitative categories indicative of major gene expression. No consistent effect of temperature on quartet pollen production was identified, with some genotypes producing more and some producing less quartet pollen under different temperature treatments. The genetic heterogeneity and frequent pollen infertility of this population prevents strong conclusions being made. However, it is clear that the quartet phenotype in this Brassica population does not show complete penetrance and shows variable (likely genotype-specific) response to temperature stress. In future, identification of quartet phenotypes in Brassica would perhaps best be carried out via screening of diploid (e.g. B. rapa) TILLING populations.


Assuntos
Brassica/fisiologia , Pólen/ultraestrutura , Brassica/ultraestrutura , Brassica napus/fisiologia , Brassica napus/ultraestrutura , Temperatura Baixa , Genótipo , Temperatura Alta , Mostardeira/fisiologia , Mostardeira/ultraestrutura , Fenótipo , Polinização , Autofertilização
18.
Plant Sci ; 272: 32-41, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807604

RESUMO

Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L.


Assuntos
Brassica napus/fisiologia , Oxigenases de Função Mista/metabolismo , Sapium/genética , Sequência de Aminoácidos , Brassica napus/genética , Congelamento , Oxigenases de Função Mista/genética , Plantas Geneticamente Modificadas , Sapium/enzimologia , Alinhamento de Sequência
19.
Insect Sci ; 25(4): 562-580, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29536624

RESUMO

The general increase of the cultivation and trade of Bt transgenic plants resistant to Lepidoptera pests raises concerns regarding the conservation of animal and plant biodiversity. Demand for biofuels has increased the cultivation and importation of oilseed rape (Brassica napus L.), including transgenic lines. In environmental risk assessments (ERAs) for its potential future cultivation as well as for food and feed uses, the impact on wild Brassicaeae relatives and on non-target Lepidoptera should be assessed. Here we consider the potential exposure of butterflies as results of possible cultivation or naturalization of spilled seed in Sicily (Italy). Diurnal Lepidoptera, which are pollinators, can be exposed directly to the insecticidal proteins as larvae (mainly of Pieridae) through the host and through the pollen that can deposit on other host plants. Adults can be exposed via pollen and nectar. The flight periods of butterflies were recorded, and they were found to overlap for about 90% of the flowering period of B. napus for the majority of the species. In addition, B. napus has a high potential to hybridise with endemic taxa belonging to the B. oleracea group. This could lead to an exposure of non-target Lepidoptera if introgression of the Bt gene into a wild population happens. A rank of the risk for butterflies and wild relatives of oilseed rape is given. We conclude that, in environmental risk assessments, attention should be paid to plant-insect interaction especially in a biodiversity hotspot such as Sicily.


Assuntos
Brassica napus/genética , Borboletas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/efeitos adversos , Animais , Biodiversidade , Brassica napus/química , Brassica napus/fisiologia , Modelos Teóricos , Néctar de Plantas/química , Pólen/química , Medição de Risco , Sicília
20.
Plant Cell Physiol ; 58(11): 1991-2005, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016959

RESUMO

Boron (B) is an essential micronutrient for the growth and development of plants. Oilseed rape (Brassica napus L.) is a staple oleaginous crop, which is greatly susceptible to B deficiency. Significant differences in tolerance of low-B stresses are observed in rapeseed genotypes, but the underlying mechanism remains unclear, particularly at the single-cell level. Here we provide novel insights into pectin-mediated cell wall (CW) mechanical properties implicated in the differential tolerance of low B in rapeseed genotypes. Under B deficiency, suspension cells of the low-B-sensitive genotype 'W10' showed more severely deformed morphology, lower viabilities and a more easily ruptured CW than those of the low-B-tolerant genotype 'QY10'. Cell rupture was attributed to the weakened CW mechanical strength detected by atomic force microscopy; the CW mechanical strength of 'QY10' was reduced by 13.6 and 17.4%, whereas that of 'W10' was reduced by 29.0 and 30.4% under 0.25 and 0.10 µM B conditions, respectively. The mechanical strength differences between 'QY10' and 'W10' were diminished after the removal of pectin. Further, 'W10' exhibited significantly higher pectin concentrations with much more rhamnogalacturonan II (RG-II) monomer, and also presented obviously higher mRNA abundances of pectin biosynthesis-related genes than 'QY10' under B deficiency. CW regeneration was more difficult for protoplasts of 'W10' than for those of 'QY10'. Taking the results together, we conclude that the variations in pectin-endowed CW mechanical properties play key roles in modulating the differential genotypic tolerance of rapeseed to low-B stresses at both the single-cell and the plant level, and this can potentially be used as a selection trait for low-B-tolerant rapeseed breeding.


Assuntos
Boro/metabolismo , Brassica napus/fisiologia , Parede Celular/química , Fenômenos Biomecânicos , Boro/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Microscopia de Força Atômica , Pectinas/análise , Pectinas/genética , Pectinas/metabolismo , Células Vegetais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA