Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171134

RESUMO

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Germinação/genética , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Mutagênese , Estresse Fisiológico/genética , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Biotechnol J ; 22(3): 738-750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921406

RESUMO

Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Melhoramento Vegetal , Brassica rapa/genética , Genômica , Mutagênese/genética , Sementes/genética , Óleos de Plantas
3.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003410

RESUMO

Nitrogen is essential for improving the seed oil yield of rapeseed (Brassica napus L.). However, the molecular mechanism by which increased nitrogen rates impact seed oil content is largely unknown. Therefore, a field experiment was conducted to determine how three nitrogen application rates (120, 240, and 360 kg ha-1) regulated seed oil content via transcriptomic analysis. The results showed that the seed yield and the protein and total N contents increased from N1 to N3, with average increases of 57.2%, 16.9%, and 79.5%, respectively. However, the seed oil content significantly decreased from N1 to N3, with an average decrease of 8.6%. These results were repeated over a number of years. The quantity of oil protein bodies observed under a transmission electron microscope was in accordance with the ultimate seed oil and protein contents. As the nitrogen application rate increased, a substantial number of genes involved in the photosynthesis, glycolysis, and phenylpropanoid biosynthesis pathways were up-regulated, as were TF families, such as AP2/ERF, MYB, and NAC. The newly identified genes were mainly involved in carbohydrate, lipid, and amino acid metabolism. Metabolic flux analysis showed that most of the genes involved in glycolysis and fatty acid biosynthesis had higher transcript levels in the early development stages. Our results provide new insights into the molecular regulation of rapeseed seed oil content through increased nitrogen application rates.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/metabolismo , Transcriptoma , Nitrogênio/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Sementes/metabolismo , Óleos de Plantas/metabolismo
4.
Plant Cell Environ ; 46(11): 3405-3419, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37564020

RESUMO

Brassica crops include various edible vegetable and plant oil crops, and their production is limited by low temperature beyond their tolerant capability. The key regulators of low-temperature resistance in Brassica remain largely unexplored. To identify posttranscriptional regulators of plant response to low temperature, we performed small RNA profiling, and found that 16 known miRNAs responded to cold treatment in Brassica rapa. The cold response of seven of those miRNAs were further confirmed by qRT-PCR and/or northern blot analyses. In parallel, a genome-wide association study of 220 accessions of Brassica napus identified four candidate MIRNA genes, all of which were cold-responsive, at the loci associated with low-temperature resistance. Specifically, these large-scale data analyses revealed a link between miR1885 and the plant response to low temperature in both B. rapa and B. napus. Using 5' rapid amplification of cDNA ends approach, we validated that miR1885 can cleave its putative target gene transcripts, Bn.TIR.A09 and Bn.TNL.A03, in B. napus. Furthermore, overexpression of miR1885 in Semiwinter type B. napus decreased the mRNA abundance of Bn.TIR.A09 and Bn.TNL.A03 and resulted in increased sensitivity to low temperature. Knocking down of miR1885 in Spring type B. napus led to increased mRNA abundance of its targets and improved rapeseed tolerance to low temperature. Together, our results suggested that the loci of miR1885 and its targets could be potential candidates for the molecular breeding of low temperature-tolerant Spring type Brassica crops.


Assuntos
Brassica napus , Brassica rapa , Brassica , MicroRNAs , Brassica napus/genética , Brassica rapa/genética , Brassica/genética , Estudo de Associação Genômica Ampla , Multiômica , Temperatura , MicroRNAs/genética , RNA Mensageiro , Regulação da Expressão Gênica de Plantas
5.
Theor Appl Genet ; 136(9): 187, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572171

RESUMO

KEY MESSAGE: Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Edição de Genes , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Ácidos Esteáricos/metabolismo , Óleos de Plantas , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175459

RESUMO

Nitrogen (N) is one of the most important mineral elements for plant growth and development and a key factor for improving crop yield. Rapeseed, Brassica napus, is the largest oil crop in China, producing more than 50% of the domestic vegetable oil. However, high N fertilizer input with low utilization efficiency not only increases the production cost but also causes serious environmental pollution. Therefore, the breeding of rapeseed with high N efficiency is of great strategic significance to ensure the security of grain and oil and the sustainable development of the rapeseed industry. In order to provide reference for genetic improvement of rapeseed N-efficient utilization, in this article, we mainly reviewed the recent research progress of rapeseed N efficiency, including rapeseed N efficiency evaluation, N-efficient germplasm screening, and N-efficient physiological and molecular genetic mechanisms.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Nitrogênio , Melhoramento Vegetal , Brassica rapa/genética , Óleos de Plantas
7.
Cells ; 12(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048168

RESUMO

Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Although HMPs have been identified in several plants, no studies to date have identified the HMPs in Brassica rapa (B. rapa). Here, we identified 85 potential HMPs in B. rapa by bioinformatic methods. The promoters of the identified genes contain many elements associated with stress responses, including response to abscisic acid, low-temperature, and methyl jasmonate. The expression levels of BrHMP14, BrHMP16, BrHMP32, BrHMP41, and BrHMP42 were upregulated under Cu2+, Cd2+, Zn2+, and Pb2+ stresses. BrHMP06, BrHMP30, and BrHMP41 were also significantly upregulated after drought treatment. The transcripts of BrHMP06 and BrHMP11 increased mostly under cold stress. After applying salt stress, the expression of BrHMP02, BrHMP16, and BrHMP78 was induced. We observed increased BrHMP36 expression during the self-incompatibility (SI) response and decreased expression in the compatible pollination (CP) response during pollen-stigma interactions. These changes in expression suggest functions for these genes in HMPs include participating in heavy metal transport, detoxification, and response to abiotic stresses, with the potential for functions in sexual reproduction. We found potential co-functional partners of these key players by protein-protein interaction (PPI) analysis and found that some of the predicted protein partners are known to be involved in corresponding stress responses. Finally, phosphorylation investigation revealed many phosphorylation sites in BrHMPs, suggesting post-translational modification may occur during the BrHMP-mediated stress response. This comprehensive analysis provides important clues for the study of the molecular mechanisms of BrHMP genes in B. rapa, especially for abiotic stress and pollen-stigma interactions.


Assuntos
Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Polinização , Estresse Fisiológico/genética , Estresse Salino , Pólen
8.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047249

RESUMO

A high oleic acid content is considered an essential characteristic in the breeding of high-quality rapeseed in China. Long-chain non-coding RNA (lncRNA) molecules play an important role in the plant's growth and its response to stress. To better understand the role of lncRNAs in regulating plant reproductive development, we analyzed whole-transcriptome and physiological data to characterize the dynamic changes in lncRNA expression during the four representative times of seed development of high- and low-oleic-acid rapeseed in three regions. We identified 21 and 14 lncRNA and mRNA modules, respectively. These modules were divided into three types related to region, development stages, and material. Next, we analyzed the key modules related to the oil content and the oleic acid, linoleic acid, and linolenic acid contents with physiological data and constructed the key functional network analysis on this basis. Genes related to lipid metabolism, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were present in the co-expression network, suggesting that the effect of these genes on lipid metabolism might be embodied by the expression of these lncRNAs. Our results provide a fresh insight into region-, development-stage-, and material-biased changes in lncRNA expression in the seeds of Brassica napus. Some of these lncRNAs may participate in the regulatory network of lipid accumulation and metabolism, together with regulated genes. These results may help elucidate the regulatory system of lncRNAs in the lipid metabolism of high-oleic-acid rapeseed seeds.


Assuntos
Brassica napus , Brassica rapa , RNA Longo não Codificante , Brassica napus/genética , Brassica napus/metabolismo , Ácido Oleico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Óleos de Plantas/metabolismo , Metabolismo dos Lipídeos/genética , Melhoramento Vegetal , Brassica rapa/genética , Brassica rapa/metabolismo , Sementes/metabolismo
9.
J Hazard Mater ; 452: 131218, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934626

RESUMO

Selenium (Se) inhibits cadmium (Cd) root-to-shoot translocation and accumulation in the shoots of pak choi; however, the mechanism by which Se regulates Cd retention in roots is still poorly understood. A time-dependent hydroponic experiment was conducted to compare the effects of selenite and selenate on Cd translocation and retention in the roots. The underlying mechanisms were investigated regarding Se biotransformation and metal transportation in roots using HPLC and transcriptome analyses. Selenite showed reducing effects on Cd translocation and accumulation in shoots earlier than selenate. Selenite is mainly biotransformed into selenomethionine (80% of total Se in roots) at 72 h, while SeO42- was the dominant species in the selenate treatments (68% in shoots). Selenite up-regulated genes involved in the biosynthesis of lignin, suberin, and phytochelatins and those involved in stress signaling, thereby helping to retain Cd in the roots, whereas essentially, selenate had opposite effects and impaired the symplastic and apoplastic retention of Cd. These results suggest that cell-wall reinforcement and Cd retention in roots may be the key processes by which Se regulates Cd accumulation, and faster biotransformation into organic seleno-compounds could lead to earlier effects.


Assuntos
Brassica rapa , Cádmio , Selênio , Poluentes do Solo , Brassica rapa/genética , Brassica rapa/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Raízes de Plantas/metabolismo , Ácido Selênico/farmacologia , Ácido Selênico/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Poluentes do Solo/metabolismo
10.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838566

RESUMO

Moringa oleifera is rich in bioactive compounds such as beta-carotene, which have high nutritional values and antimicrobial applications. Several studies have confirmed that bioactive-compound-based herbal medicines extracted from the leaves, seeds, fruits and shoots of M. oleifera are vital to cure many diseases and infections, and for the healing of wounds. The ß-carotene is a naturally occurring bioactive compound encoded by zeta-carotene desaturase (ZDS) and phytoene synthase (PSY) genes. In the current study, computational analyses were performed to identify and characterize ZDS and PSY genes retrieved from Arabidopsis thaliana (as reference) and these were compared with the corresponding genes in M. oleifera, Brassica napus, Brassica rapa, Brassica oleracea and Bixa orellana. The BLAST results revealed that all the plant species considered in this study encode ß-carotene genes with 80-100% similarity. The Pfam analysis on ß-carotene genes of all the investigated plants confirmed that they belong to the same protein family and domain. Similarly, phylogenetic analysis revealed that ß-carotene genes of M. oleifera belong to the same ancestral class. Using the ZDS and PSY genes of Arabidopsis thaliana as a reference, we conducted qRT-PCR analysis on RNA extracted from the leaves of M. oleifera, Brassica napus, Brassica rapa and Bixa orellana. It was noted that the most significant gene expression occurred in the leaves of the studied medicinal plants. We concluded that not only are the leaves of M. oleifera an effective source of bioactive compounds including beta carotene, but also the leaves of Brassica napus, Brassica rapa and Bixa orellana can be employed as antibiotics and antioxidants against bacterial or microbial infections.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Moringa oleifera , Plantas Medicinais , beta Caroteno , Moringa oleifera/genética , Arabidopsis/genética , Filogenia , Brassica napus/genética , Brassica rapa/genética , Plantas Medicinais/genética , Perfilação da Expressão Gênica , Extratos Vegetais , Folhas de Planta
11.
Plant Cell Rep ; 42(2): 337-354, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653661

RESUMO

KEY MESSAGE: The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.


Assuntos
Brassica rapa , RNA Longo não Codificante , RNA Longo não Codificante/genética , Transcriptoma/genética , Genômica , Brassica rapa/genética , Pólen/genética , Pólen/metabolismo , Perfilação da Expressão Gênica
12.
Theor Appl Genet ; 136(1): 6, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36656366

RESUMO

KEY MESSAGE: BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line 'FT', whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Mutação , Infertilidade das Plantas , Proteínas de Plantas , Arabidopsis/genética , Brassica/genética , Brassica rapa/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genética
13.
Plant Physiol ; 191(3): 1836-1856, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36494098

RESUMO

Rapeseed (Brassica napus), an important oil crop worldwide, provides large amounts of lipids for human requirements. Calcineurin B-like (CBL)-interacting protein kinase 9 (CIPK9) was reported to regulate seed oil content in the plant. Here, we generated gene-silenced lines through RNA interference biotechnology and loss-of-function mutant bnacipk9 using CRISPR/Cas9 to further study BnaCIPK9 functions in the seed oil metabolism of rapeseeds. We discovered that compared with wild-type (WT) lines, gene-silenced and bnacipk9 lines had substantially different oil contents and fatty acid compositions: seed oil content was improved by 3%-5% and 1%-6% in bnacipk9 lines and gene-silenced lines, respectively; both lines were with increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids. Additionally, hormone and glucose content analyses revealed that compared with WT lines the bnacipk9 lines showed significant differences: in bnacipk9 seeds, indoleacetic acid and abscisic acid (ABA) levels were higher; glucose and sucrose contents were higher with a higher hexose-to-sucrose ratio in bnacipk9 mid-to-late maturation development seeds. Furthermore, the bnacipk9 was less sensitive to glucose and ABA than the WT according to stomatal aperture regulation assays and the expression levels of genes involved in glucose and ABA regulating pathways in rapeseeds. Notably, in Arabidopsis (Arabidopsis thaliana), exogenous ABA and glucose imposed on developing seeds revealed the effects of ABA and glucose signaling on seed oil accumulation. Altogether, our results strongly suggest a role of CIPK9 in mediating the interaction between glucose flux and ABA hormone signaling to regulate seed oil metabolism in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Humanos , Ácido Abscísico/metabolismo , Glucose/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Óleos de Plantas/metabolismo , Sacarose/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo
14.
Front Biosci (Landmark Ed) ; 28(12): 345, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179748

RESUMO

BACKGROUND: Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most popular vegetables in China because of its taste and health benefits. The area of production has obvious effects on the quality of Chinese cabbage. However, metabolite profiling and variations in different production areas are still unclear. METHODS: Here, widely targeted metabolite analyses based on the ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach were performed to study the metabolite profiling of Chinese cabbage planted in the Jiaozhou and Jinan areas. RESULTS: A total of 531 metabolites were detected, of which 529 were present in the Chinese cabbage from both areas, 108 were found to be chemicals related to Chinese traditional medicine, and 79 were found to correspond to at least one disease. Chinese cabbage is rich in nutritious substances such as lipids, phenolic acids, amino acids and derivatives, nucleotides and derivatives, organic acids, flavonoids, glucosinolates, saccharides, alcohols, and vitamins. Comparative analysis showed that the metabolic profiles differed between areas, and 89 differentially altered metabolites (DAMs) were characterized. Of these, 78 DAMs showed higher levels in Jinan Chinese cabbage, whereas 11 had higher levels in Jiaozhou Chinese cabbage. Two metabolites, S-(Methyl)glutathione and nicotinic acid adenine dinucleotide, were unique in Jiaozhou Chinese cabbage. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DAMs were enriched into 23 pathways, of which tryptophan metabolism and thiamine metabolism were the significant enrichment pathways. CONCLUSIONS: This study provides new insights into the metabolite profiles and production areas affecting the metabolite variations of Chinese cabbage, which will be useful for functional Chinese cabbage cultivation.


Assuntos
Brassica rapa , Brassica , Brassica rapa/genética , Brassica rapa/metabolismo , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Brassica/química , Brassica/genética , Regulação da Expressão Gênica de Plantas
15.
Theor Appl Genet ; 135(10): 3497-3510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962210

RESUMO

KEY MESSAGE: A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética
16.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638635

RESUMO

Circular RNAs (circRNAs) are covalently closed RNA molecules generated by the back-splicing of exons from linear precursor mRNAs. Though various linear RNAs have been shown to play important regulatory roles in many biological and developmental processes, little is known about the role of their circular counterparts. In this study, we performed high-throughput RNA sequencing to delineate the expression profile and potential function of circRNAs during the five stages of pollen development in Brassica rapa. A total of 1180 circRNAs were detected in pollen development, of which 367 showed stage-specific expression patterns. Functional enrichment and metabolic pathway analysis showed that the parent genes of circRNAs were mainly involved in pollen-related molecular and biological processes such as mitotic and meiotic cell division, DNA processes, protein synthesis, protein modification, and polysaccharide biosynthesis. Moreover, by predicting the circRNA-miRNA network from our differentially expressed circRNAs, we found 88 circRNAs with potential miRNA binding sites, suggesting their role in post-transcriptional regulation of the genes. Finally, we confirmed the back-splicing sites of nine selected circRNAs using divergent primers and Sanger sequencing. Our study presents the systematic analysis of circular RNAs during pollen development and forms the basis of future studies for unlocking complex gene regulatory networks underpinning reproduction in flowering plants.


Assuntos
Brassica rapa/genética , Regulação da Expressão Gênica/genética , Pólen/genética , RNA Circular/genética , RNA de Plantas/genética , Sítios de Ligação/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Splicing de RNA/genética , RNA Mensageiro/genética
17.
Plant Cell Rep ; 40(12): 2421-2434, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34542669

RESUMO

KEY MESSAGE: Cytological observations of chromosome pairing showed that evolutionarily genome duplication might reshape non-homologous pairing during meiosis in haploid B. rapa. A vast number of flowering plants have evolutionarily undergone whole genome duplication (WGD) event. Typically, Brassica rapa is currently considered as an evolutionary mesohexaploid, which has more complicated genomic constitution among flowering plants. In this study, we demonstrated chromosome behaviors in haploid B. rapa to understand how meiosis proceeds in presence of a single homolog. The findings showed that a diploid-like chromosome pairing was generally adapted during meiosis in haploid B. rapa. Non-homologous chromosomes in haploid cells paired at a high-frequency at metaphase I, over 50% of examined meiocytes showed at least three pairs of bivalents then equally segregated at anaphase I during meiosis. The fluorescence immunostaining showed that the cytoskeletal configurations were mostly well-organized during meiosis. Moreover, the expressed genes identified at meiosis in floral development was rather similar between haploid and diploid B. rapa, especially the expression of known hallmark genes pivotal to chromosome synapsis and homologous recombination were mostly in haploid B. rapa. Whole-genome duplication evolutionarily homology of genomic segments might be an important reason for this phenomenon, which would reshape the first division course of meiosis and influence pollen development in plants.


Assuntos
Brassica rapa/genética , Pareamento Cromossômico , Meiose , Pólen , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Haploidia , Recombinação Homóloga , Pólen/genética , Pólen/fisiologia
18.
Methods Mol Biol ; 2288: 145-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270010

RESUMO

Culture of isolated microspores is a widely used method to obtain haploid and doubled haploid plants for many crop species. This protocol describes the steps necessary to obtain a large number of microspore derived embryos for pakchoi (Brassica rapa L. ssp. chinensis) and zicaitai (Brassica rapa L. ssp. сhinensis Hanelt var. purpuraria Kitam).


Assuntos
Brassica rapa/crescimento & desenvolvimento , Brassica rapa/genética , Melhoramento Vegetal/métodos , Brassica rapa/ultraestrutura , Cloroplastos/ultraestrutura , Cromossomos de Plantas/ultraestrutura , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Meios de Cultura/química , Diploide , Germinação/genética , Haploidia , Homozigoto , Microscopia de Fluorescência , Biologia Molecular/métodos , Ploidias , Pólen/genética , Pólen/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
19.
Methods Mol Biol ; 2288: 181-199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270012

RESUMO

The production of haploid and doubled haploid plants is a biotechnological tool that shortens the breeding process of new cultivars in many species. Doubled haploid plants are homozygous at every locus and they can be utilized as parents to produce F1 hybrids. In this chapter, we describe a protocol for the production of doubled haploid plants in Brassica rapa L. subsp. pekinensis using androgenesis induced by isolated microspore cultures.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Brassica rapa/genética , Melhoramento Vegetal/métodos , Aclimatação/genética , Brassica rapa/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Meios de Cultura/química , DNA de Plantas/genética , Diploide , Glucose-6-Fosfato Isomerase/genética , Haploidia , Homozigoto , Biologia Molecular/métodos , Pólen/genética , Pólen/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Regeneração/genética , Técnicas de Cultura de Tecidos
20.
Genes Genomics ; 43(3): 251-258, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555504

RESUMO

BACKGROUND: Hybridization and polyploidization events are important driving forces in plant evolution. Allopolyploids formed between different species can be naturally or artificially created but often suffer from genetic instability and infertility in successive generations. xBrassicoraphanus is an intergeneric allopolyploid obtained from a cross between Brassica rapa and Raphanus sativus, providing a useful resource for genetic and genomic study in hybrid species. OBJECTIVE: The current study aims to understand the cause of hybrid sterility and pollen abnormality in different lines of synthetic xBrassicoraphanus from the cytogenetic perspective. METHODS: Alexander staining was used to assess the pollen viability. Cytogenetic analysis was employed to monitor meiotic chromosome behaviors in pollen mother cells (PMCs). Origins of parental chromosomes in xBrassicoraphanus meiocytes were determined by genome in situ hybridization analysis. RESULTS: The xBrassicoraphanus lines BB#4 and BB#6 showed high rates of seed abortion and pollen deformation. Abnormal chromosome behaviors were observed in their PMCs, frequently forming univalents and inter-chromosomal bridges during meiosis. A positive correlation also exists between meiotic defects and the formation of micronuclei, which is conceivably responsible for unbalanced gamete production and pollen sterility. CONCLUSION: These results suggest that unequal segregation of meiotic chromosomes, due in part to non-homologous interactions, is responsible for micronuclei and unbalanced gamete formation, eventually leading to pollen degeneration and inferior fertility in unstable xBrassicoraphanus lines.


Assuntos
Brassica rapa/genética , Gametogênese Vegetal/genética , Meiose/genética , Micronúcleos com Defeito Cromossômico , Infertilidade das Plantas/genética , Raphanus/genética , Brassica rapa/citologia , Brassica rapa/embriologia , Cromossomos de Plantas , Cruzamentos Genéticos , Pólen/citologia , Raphanus/citologia , Raphanus/embriologia , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA